Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Физико-механические основы измельчения





 

Измельчение осуществляется под действием внешних сил, преодолевающих силы взаимного сцепления частиц материала. При дроблении куски твердого материала сначала подвергаются объемной деформации, а затем разрушаются по ослабленным дефектами (макро- и микротрещинами) сечениям с образованием новых поверхностей. Куски продукта дробления ослаблены трещинами, значительно меньше исходных. Поэтому с увеличением степени измельчения возрастает расход энергии на измельчение.

Таким образом, работа, полезно затрачиваемая на дробление, расходуется на объемную деформацию разрушаемых кусков и на образование новых поверхностей.

Работа упругого деформирования объема разрушаемого куска пропорциональна изменению объема (деформированному объему):

,

где – коэффициент пропорциональности, равный работе деформирования единицы объема твердого тела; – изменение объема (деформированный объем) разрушаемого куска.

Работа образования новой поверхности при измельчении пропорциональна ее изменению:

,

где – коэффициент пропорциональности, равный работе, затрачиваемой на образование единицы новой поверхности твердого тела; – величина вновь образованной поверхности.

Полная работа внешних сил при дроблении представляет собой уравнение Ребиндера:

. (9.1)

При дроблении крупного куска с малой степенью измельчения можно пренебречь работой, затрачиваемой на образование новой поверхности, вследствие ее незначительной величины.

Учитывая, кроме того, что изменение объема куска пропорционально его первоначальному объему, а объем пропорционален третьей степени его характерного размера (), уравнение (9.1) в данном случае можно представить
в виде

, (9.2)

где – коэффициент пропорциональности.

Уравнение (9.2) является выражением гипотезы дробления Кика-Кирпичева, согласно которой работа дробления пропорциональна объему (или массе) дробимого куска. При этом полная работа дробления определяется приближенно лишь для случая крупного дробления с малой степенью измельчения, поскольку учитывается только работа деформирования объема.

Если дробление производится с большой степенью измельчения, то в уравнении (9.1) можно пренебречь работой деформирования объема в связи с ее относительной малостью по сравнению с работой образования новых поверхностей. Тогда, учитывая, что изменение поверхности куска пропорционально его начальной поверхности, а последняя пропорциональна квадрату характерного размера куска , получим:

, (9.3)

где – коэффициент пропорциональности.

Уравнение (9.3) является выражением гипотезы Риттингера, согласно которой работа дробления пропорциональна величине вновь образованной при дроблении поверхности.

Гипотеза Риттингера применима для приближенного определения полной работы только при дроблении с большими степенями измельчения (тонкое измельчение), так как ею учитывается лишь работа образования новых поверхностей.

Для случая, когда следует принимать во внимание оба слагаемых уравнения (9.1) (при средних по величине степенях измельчения), Бондом было предложено уравнение

. (9.4)

В соответствии с которым работа дробления одного куска пропорциональна среднегеометрическому из его объема и поверхности ( – коэффициент пропорциональности).

По уравнению (9.4) можно приближенно найти работу, затраченную на измельчение со средними (по величине) степенями измельчения.

На основании уравнений (9.2)–(9.4) работу дробления одного куска с определенной степенью измельчения можно представить в обобщенном виде:

, (9.5)

где меняется в пределах от 2 до 3, а (индекс «» характеризует дробящее усилие) – от до в зависимости от степени измельчения.

Работа дробления материала массой , состоящего из кусков одинакового размера, в соответствии с уравнением (9.5) равна:

. (9.6)

В этом уравнении – плотность материала; учитывает (в отличие
от ) форму куска материала (например, для шара ); – коэффициент пропорциональности.

Определим зависимость работы измельчения от степени измельчения и крупности кусков исходного материала, исходя из уравнения (9.6).

Обозначим: и соответственно средние характерные размеры кусков исходного и дробленого материалов; – число стадий дробления; – степень измельчения для каждой отдельной стадии.

Средние размеры кусков, поступающих на последовательные стадии измельчения, составят:

.

Согласно уравнению (9.6), работа дробления материала массой на каждой стадии измельчения равна

……………………

 

При этом допускается, что на каждую последующую стадию поступает одно и то же количество материала (отсутствуют его потери) и измельчение на всех стадиях происходит с одинаковой степенью измельчения .

Сумма работ измельчения по стадиям определяет общую работу измельчения материала:

.

Сумма членов геометрической прогрессии (в квадратных скобках) со знаменателем составляет:

,

где – общая степень измельчения, связанная с одинаковыми степенями измельчения на каждой стадии равенством , причем .

Следовательно

. (9.7)

Уравнение (9.7) устанавливает зависимость работы измельчения от степени измельчения и крупности исходного материала. Полагая в уравнении (9.7) показатель , равный 2, после несложных преобразований получим указан-
ную зависимость для случая измельчения в области применения гипотезы Риттингера:

. (9.8)

Отсюда следует, что при измельчении материала определенной средней крупности с одинаковыми постоянными степенями измельчения на каждой стадии работа измельчения пропорциональна степени измельчения минус единица. При размоле материала различной средней крупности, но с одинаковой степенью измельчения работа измельчения обратно пропорциональна средней крупности исходного материала.

Эти выводы подтверждаются практикой измельчения: чем мельче исходный материал, тем больше расход энергии на его измельчение при постоянной степени измельчения.

Полагая в уравнении (9.7) показатель и 2,5, можно получить зависимость работы измельчения от степени измельчения в области применения гипотез Кика-Кирпичева и Бонда.

Уравнения (9.2)–(9.4) не позволяют вычислить абсолютное значение работы измельчения, поскольку неизвестны коэффициенты пропорциональности . Поэтому указанные уравнения используются только для сравнительной оценки процессов измельчения.

Потребляемую дробилкой (мельницей) мощность при работе на определенном материале ориентировочно находят исходя из опытных данных работы какой-либо другой дробилки (мельницы) по измельчению того же материала.

Если известны, например, производительность , потребляемая мощность и степень измельчения работающей мельницы, а также производительность и степень измельчения другой мельницы (предполагаемой к внедрению), то потребляемую мощность последней машины можно найти на основе допущения о применимости гипотезы Риттингера и равенства КПД обеих мельниц с помощью уравнения (9.8):

.

Таким образом, используя гипотезы измельчения, можно наметить правильную организацию процессов измельчения и в первом приближении определить затраты энергии на проведение этих процессов.

 







Дата добавления: 2015-09-04; просмотров: 1755. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия