Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Момент инерции относительно оси, параллельной центральной (теорема Штейнера)





 

Теорема Штейнера:

Момент инерции относительно оси, параллельной центральной, равен центральному осевому моменту инерции плюс произведение площади всей фигуры на квадрат расстояния между осями.

Для прямоугольника высотой h и шириной b:

Осевой момент инерции:

Момент сопротивления изгибу:

момент сопротивления изгибу равен отношению момента инерции к расстоянию наиболее удаленного волокна от нейтральной линии:

т.к. , то

 

Для круга:

Полярный момент инерции:

Осевой момент инерции:

Момент сопротивления кручению:

Т.к. , то

Момент сопротивления изгибу:

 

 


2. План выполнения расчетно-графической работы «Геометрические характеристики плоских сечений»

 

2.1. Выписать следующие справочные данные из раздела 3:

 

· для равнобокого уголка /пример обозначения №4 (4)

b – ширина полки,

F – площадь поперечного сечения,

z 0 – координата центра тяжести,

- осевой момент инерции сечения,

- центробежный момент инерции

 

· для неравнобокого уголка /пример обозначения №4/2,5 (4)

B – ширина большей полки,

b – ширина меньшей полки,

F – площадь поперечного сечения,

x0, y0 – положение центра тяжести

, - осевые моменты инерции сечения,

- центробежный момент инерции

 

· для швеллера

h – высота,

b – ширина полки,

F – площадь поперечного сечения,

z 0 – координата центра тяжести,

, - осевые моменты инерции сечения

 

· для двутавра

h – высота,

b – ширина полки,

F – площадь поперечного сечения,

, - осевые моменты инерции сечения

 

· для полосы

- вычислить площадь поперечного сечения

- вычислить осевые моменты инерции сечения по формулам

,

 

2.2. На миллиметровой бумаге формата А4 в выбранном Вами масштабе начертить сечение, составленное из стандартных профилей, пронумеровать: №1 – уголок, №2 – швеллер или двутавр, №3 – полоса.

 

2.3. Выбрать положение координатных осей. Рационально, если одна из осей проходит через центр тяжести одной из фигур, и все оставшиеся координаты центров тяжести будут положительными.

Определить положение центра тяжести сечения по формулам:

,

Нанести положение центра тяжести на чертеж.

 

2.4. Определить расстояния:

· между центральной осью сечения yc и осью yc1, проходящей через центр тяжести уголка

Если , то b1, будет со знаком «-»

· между центральной осью сечения yc и осью yc2, проходящей через центр тяжести швеллера (или двутавра)

Если , то b2, будет со знаком «-»

· между центральной осью сечения yc и осью yc3, проходящей через центр тяжести полосы

Если , то b3, будет со знаком «-»

· между осями xc и xc1

Если , то a1, будет со знаком «-»

· определить a2 и a3

 

2.5. Вычислить с помощью теоремы Штейнера осевые моменты инерции сечения по формулам:

 

,

 

где - осевой момент инерции для уголка (указан в справочнике)

- осевой момент инерции швеллера или двутавра (указан в справочнике)

- осевой момент инерции для полосы вычислить по формулам:

или

в зависимости от расположения полосы по отношению к оси 0xc3. Размер стороны, перпендикулярной оси 0xc3, берется в третьей степени (в кубе). Аналогично для осевых моментов неравнобокого уголка, швеллера или двутавра – значение осевого момента из справочника берется большее, если большая сторона перпендикулярна оси 0x, и, соответственно, меньшее, если меньшая сторона перпендикулярна оси 0x

F1, F2, F3 – площади поперечных сечений.

 

 

где - осевой момент инерции для уголка (указан в справочнике). Для равнобокого уголка . Для неравнобокого уголка выбирается меньшее значение, если большая сторона уголка перпендикулярна оси 0xc1, а меньшая сторона уголка перпендикулярна оси 0yc1.

- осевой момент инерции швеллера или двутавра (указан в справочнике). Большее или меньшее значение зависит от расположения стандартного профиля по отношению к оси.

- осевой момент инерции для полосы

 

Центробежный момент инерции сечения:

 

где - центробежный момент инерции для уголка (берется из справочника). При расположении уголка в I и III четверти декартовой системы координат знак у центробежного момента «-», во II и в IV четверти – знак «+».

 

 

Знаки a1, b1, a2, b2, a3, b3 учитываются.

 

- центробежный момент инерции для швеллера или двутавра.

 

- центробежный момент инерции для полосы.

 

2.6. Вычислить значение угла поворота α;:

 

Если значение угла α; положительное – оси поворачиваются против часовой стрелки.

 

2.7. Вычислить значение главных осевых моментов инерции

 

 

2.8. Заполнить таблицу №1.







Дата добавления: 2015-09-04; просмотров: 3264. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия