Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет простого трубопровода.





1.Трубопровод называют простым, если жидкость транспортируется по нему от питателя к приемнику без ответвлений потока, но может иметь различные диаметры и включать местные сопротивления.

Жидкость движется по трубопроводу благодаря тому, что ее энергия в начале трубопровода больше, чем в конце.

Разность в уровнях энергии может быть обеспечена разностью уровней жидкости, работой насоса или давлением газа, например, за счет применения гидроаккумуляторов.

Движение жидкости за счет разности уровней (разности геометрических высот) применяется в гидротехнике и водоснабжении.

В машиностроении движение жидкости обеспечивается работой насоса и гидроаккумуляторами. Гидроаккмуляторы - емкости с разделителем, с одной стороны, использующие давление газа для создания запаса энергии, с другой стороны, рабочую жидкость, заправленную в гидроаккумулятор и находящуюся под действием давления газа.

На рис.13.1 изображен простой трубопровод постоянного сечения расположенный произвольно в пространстве, состоящий из нескольких участков с длиной li и диаметром di и содержащий местные сопротивления.

В сечении «1 – 1» геометрическая высота равна z1 и избыточное давление Р1, скорость V1, а в сечении «2 - 2», соответственно z2 и Р2, V2..

Уравнение Бернулли для сечений «1- 1» и "2 – 2":

(13.1)

Σh – сумма потерь на трение по длине и в местных сопротивлениях, а также потерь на входе и выходе из трубопровода.

 







Дата добавления: 2015-09-04; просмотров: 848. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия