Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рекомендации по обработке экспериментальных данных. 1. Рассчитать экспериментальное значение коэффициента теплопередачи (КТ, эксп), отнесённого к единице площади наружной поверхности теплообменной трубы





 

1. Рассчитать экспериментальное значение коэффициента теплопередачи (КТ , эксп), отнесённого к единице площади наружной поверхности теплообменной трубы, используя формулу (2.3.1).

Для этого необходимо, в первую очередь, рассчитать тепловой поток в аппарате.

Количество теплоты, отдаваемой в единицу времени горячим теплоносителем, определяется по формуле:

 

, (2.3.5)

 

а количество теплоты, воспринимаемой в единицу времени холодным теплоносителем, – по формуле:

 

, (2.3.6)

 

где h и h – удельные энтальпии горячей воды при её начальной и конечной температуре в аппарате, соответственно;

h и h – удельные энтальпии холодной воды при её начальной и конечной температуре в аппарате, соответственно;

– массовые расходы соответственно горячего и холодного теплоносителей;

– объёмные расходы соответственно горячего и холодного теплоносителей, определённые по (2.3.3) и (2.3.4);

r – плотность холодного теплоносителя при его начальной температуре.

 

Если , то результаты лабораторных измерений являются вполне достоверными.

Обычно оказывается немного больше , что объясняется теплообменом холодной воды с окружающей средой через стенку кожуха.

Для определения коэффициента теплопередачи рекомендуется принять

 

. (2.3.7)

 

 

Средняя движущая сила теплопередачи(средняя разность температур теплоносителей в аппарате) определяется уравнением:

 

, (2.3.8)

 

где Δ Т н = (Т Т ) — разность начальной температуры горячей воды и конечной температуры холодной;

Δ Т к = (Т Т ) — разность конечной температуры горячей воды и начальной температуры холодной.

 

2. Полученное экспериментально значение коэффициента теплопередачи сравнивается со значением, рассчитанным по уравнению аддитивности термических сопротивлений (2.3.2).

Для этого необходимо рассчитать коэффициенты теплоотдачи aвн и aн.

2.1. Расчёт коэффициента теплоотдачи от горячей воды к поверхности теплообменной трубы (a1 = aвн) рекомендуется выполнять в следующем порядке:

а) определить физические свойства воды (в частности, плотность – r1; динамическую вязкость – m1; теплопроводность – l1) и критерий Прандтля при её средней температуре в теплообменнике. Средняя температура горячего теплоносителя в противоточном аппарате рассчитывается по формуле:

 

. (2.3.9)

 

Здесь и далее через D Т 1 и D Т 2 обозначены конечные изменения температур сред, то есть D Т 1 = Т Т , D Т 2 = Т Т ;

б) рассчитать среднюю скорость воды в теплообменной трубе и число Рейнольдса (Re1);

в) рассчитать число Нуссельта (Nu1), используя одно из приведённых ниже критериальных уравнений (в зависимости от гидродинамического режима течения теплоносителя):

 

▫ при Re < 2300 и Ra > 8·105

 

; (2.3.10)

 

▫ при Re < 2300 и Ra < 8·105

 

; (2.3.11)

 

▫ при 2300 < Re < 10000

 

 
; (2.3.12)

 

▫ при Re > 10000

 

. (2.3.13)

 

Выражения критериев теплового подобия см. в пояснениях к формуле (2.1.9).

В формулах (2.3.10)…(2.3.13) определяющий линейный размер l = d вн – внутренний диаметр теплообменной трубы; L – длина элемента аппарата.

В уравнениях (2.3.10)…(2.3.13) все физические свойства среды (кроме помеченных индексом «ст») определяются при средней вдоль поверхности теплообмена температуре теплоносителя; индекс «ст» означает, что свойства среды определяются при температуре стенки.

Поскольку температуры теплообменных поверхностей в данном аппарате не измеряются, рекомендуется сделать следующие предположения:

 

и (или иначе ). (2.3.14)

 

Тогда может быть вычислена средняя температура стенки со стороны горячего теплоносителя:

 

, (2.3.15)

 

что позволяет определить свойства воды и соответствующие критерии при данной температуре;

 

 

г) рассчитать коэффициент теплоотдачи

 

. (2.3.16)

 

 

2.2. Расчёт коэффициента теплоотдачи от поверхности теплообменной трубы к холодной воде (a2 = aн) рекомендуется выполнять в следующем порядке:

а) определить физические свойства холодной воды (в частности, плотность – r2; динамическую вязкость – m2; теплопроводность – l2) и критерий Прандтля при её средней температуре в теплообменнике. Средняя температура холодного теплоносителя в противоточном аппарате рассчитывается по формуле:

 

; (2.3.17)

 

б) рассчитать среднюю скорость воды в кольцевом канале аппарата и соответствующее число Рейнольдса (Re2);

в) рассчитать число Нуссельта (Nu2), используя одно из известных критериальных уравнений:

▫ при Re < 8000

— одно из уравнений (2.3.10)…(2.3.12);

 

▫ при Re > 8000

 

. (2.3.18)

 

Здесь в критериальных уравнениях определяющий линейный размер l = d э – эквивалентный диаметр канала, который для кругового кольца определяется выражением:

 

, (2.3.19)

 

где d 2 и d 1 – соответственно наружный и внутренний диаметры кольца.

 

 

При расчёте критерия Нуссельта необходимо знать температуру стенки. В данном случае рекомендуется сделать предположение, тождественное (2.3.14). Тогда:

 

; (2.3.20)

 

г) рассчитать коэффициент теплоотдачи

 

. (2.3.21)

 

 

2.3. Определить по соответствующим справочникам теплопроводность материала теплообменной трубы при её средней температуре, которую с достаточной точностью можно считать равной

 

(2.3.22)

 

 

2.4. Рассчитать коэффициент теплопередачи (КТ , расч) по формуле (2.3.2).

Результат этого расчёта обычно значительно превышает величину коэффициента теплопередачи, полученного в эксперименте.

 

Результаты измерений и вычислений занести в таблицу:

 

s1 дм3 кг/с Т , °С Т , °С Вт v 1, м/с Re1 Nu1 a1, Вт/(м2·К) КТ расч, Вт/(м2·К)
                     
s2 дм3 кг/с Т , °С Т , °С Вт v 2, м/с Re2 Nu2 a2, Вт/(м2·К)
                   

 

КТ эксп = ______ Вт/(м2·К)

 

Проанализировать полученные величины кинетических коэффициентов теплообмена и сделать выводы по работе, особо пояснив причину расхождения в значениях КТ , эксп и КТ , расч.







Дата добавления: 2015-09-04; просмотров: 442. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия