Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение параметров кинетики измельчения





 

Параметрами для определения кинетики измельчения угля являются: время измельчения проб угля и остатки его на ситах после рассева соответствующих проб.

После обработки входных данных получается график зависимости суммарного остатка на сите от времени помола.

Для определения данной зависимости был применен метод наименьших квадратов. За переменную х берется время измельчения определенной пробы, за у – масса остатка на конкретном сите определенной пробы.

Далее для нахождения общей массы остатка на определенном сите суммируем массы остатков на ситах, которые крупнее данного сита. Таким образом, мы получаем массу остатка такую, если бы проводили ситовой анализ только с одним ситом.

Затем с помощью уравнений регрессии методом наименьших квадратов решаем поставленную задачу.

Можно использовать следующий вид уравнений регрессии:

; (3.3)

; (3.4)

; (3.5)

. (3.6)

Далее рассмотрим метод наименьших квадратов с линейной и нелинейной (параболической) регрессией.

1. Линейная регрессия

Допустим, что имеем линейную парную корреляцию, которая выражается функцией (3.3), где а и b – неизвестные параметры.

Для нахождения параметров а и b исследуем на минимум сумму квадратов разности функций и , т.е.

. (3.7)

По правилу необходимого условия экстремума функции двух переменных находим частные производные по а и b и приравняем их нулю:

(3.8);

Выполнив преобразования с суммой, получим:

(3.9)

Разделив все члены системы (3.9) на n, получим:

(3.10)

Решив систему (3.10) относительно а и b, получим:

(3.11)

где , , , , .

Тогда уравнение (3.3) можно записать в виде:

. (3.12)

Уравнение (3.12) называют уравнением регрессии у по х.

2. Нелинейная регрессия

Допустим, что имеем параболическую парную регрессию, которая выражается функцией:

, (3.13)

где а 0, а 1, а 2 – неизвестные параметры.

Для нахождения параметров а 0, а 1, а 2 воспользуемся методом наименьших квадратов:

. (3.14)

Далее находим частные производные по всем параметрам а 0, а 1, а 2 и приравняем их нулю:

(3.15)

Выполнив преобразования с суммами (3.15), получим:

(3.16)

Тогда получим уравнение в виде:

, (3.17)

где – значения, вычисленные из системы (3.16).

Средняя квадратическая ошибка уравнения параболической регрессии находится по формуле:

. (3.18)

Аналогично метод наименьших квадратов применяется и для других видов уравнений регрессии.

При сравнении с помощью кубического уравнения регрессии получилось наименьшее среднеквадратическое отклонение.

 







Дата добавления: 2015-09-04; просмотров: 517. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия