Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры на использование аксиом и теоремы умножения





Определить вероятность поражения цели двумя ракетами, если вероятность поражения каждой равна 0,9. Поражение первой (событие А) и второй ракетой (событие В) есть события независимые.
Событие «поражение цели двумя ракетами» есть сумма А+В. Представим ее в виде трех несовместных событий

Согласно аксиоме сложения вероятность суммы несовместных событий равна сумме вероятностей каждого. Тогда

Согласно следствию 1 из аксиомы 4 вероятность противоположного события равна 1 за вычетом вероятности прямого события
;
а согласно теореме умножения для независимых событий их совместное появление равно произведению вероятностей

Подставляя числовые значения, получим
.
Можно решить эту задачу иначе. Непоражение цели есть событие противоположное событию А+В, то-есть
и тогда
Используя следствие 1, получим тот же результат.

 

1.12 Независимые случайные события и их свойства

Будем считать, что дано фиксированное вероятностное пространство .

Определение 1. Два события независимы, если

Вероятность появления события A не меняет вероятности события B.

Замечание 1. В том случае, если вероятность одного события, скажем , ненулевая, то есть , определение независимости эквивалентно:

то есть условная вероятность события при условии равна безусловной вероятности события .

Определение 2. Пусть есть семейство (конечное или бесконечное) случайных событий , где — произвольное индексное множество. Тогда эти события попарно независимы, если любые два события из этого семейства независимы, то есть

Определение 3. Пусть есть семейство (конечное или бесконечное) случайных событий . Тогда эти события совместно независимы, если для любого конечного набора этих событий верно:

Замечание 2. Совместная независимость, очевидно, влечет попарную независимость. Обратное, вообще говоря, неверно.

Пример 1. Пусть брошены три уравновешенные монеты. Определим события следующим образом:

· : монеты 1 и 2 упали одной и той же стороной;

· : монеты 2 и 3 упали одной и той же стороной;

· : монеты 1 и 3 упали одной и той же стороной;

Легко проверить, что любые два события из этого набора независимы. Все же три в совокупности зависимы, ибо зная, например, что события произошли, мы знаем точно, что также произошло.

Теорема (сложение вероятностей несовместных случайных событий). Вероятность суммы двух несовместных случайных событий и равна сумме вероятностей этих событий.

Следствие. Сумма вероятностей противоположных событий равна единице.

Теорема. Для произвольных событий и

 

1.13 Независимость случайных событий в совокупности







Дата добавления: 2015-09-04; просмотров: 1412. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия