Химическое газофазное осаждение углеводородов
Метод плазмохимического осаждения из газовой фазы (ПХО) основан на том, что газообразный источник углерода (чаще всего метан, ацетилен или моноксид углерода) подвергают воздействию какого-либо высокоэнергетического источника (плазмы или резистивно-нагреваемой катушки) для того, чтобы расщепить молекулу на реакционно-активный атомарный углерод. Далее происходит его распыление над разогретой подложкой, покрытой катализатором (обычно это переходные металлы первого периода Fe, Co, Ni и др.), на котором осаждается углерод. Нанотрубки образуются только при строго соблюдаемых параметрах. Точное воспроизведение направления роста нанотрубок и их позиционирование на нанометровом уровне может быть достигнуто только при получении их методом каталитического пиролиза, поскольку местоположение катализатора определяет местоположение нанотрубок. Метод каталитического пиролиза основан на том, что газообразный источник углерода разлагается на катализаторе на углерод, который адсорбируется и растворяется в катализаторе, и другие продукты реакции. Рост углеродных нанотрубок на катализаторе происходит по принципу образования зародыша углерода на поверхности капли катализатора с последующим его разрастанием и образованием наноструктуры. Схема установки каталитического пиролиза углеводородов представлена на рис. 6.
Рис. 6. Схема установки каталитического пиролиза углеводородов
Размеры нанотрубки и ее структура определяются температурным режимом процесса, составом газовой фазы, составом и размером нанокластеров катализатора. В роли катализаторов используются квазиаморфные плёнки никеля, золь-гель-катализаторы в этаноле (например, [Ni(NH3)6]Cl2, [Co(NH3)6]Cl2), окисленная сталь и другие. Следует отметить, что в отличие от мелкодисперсных порошков железа и никеля необработанная подложка из стали и листовой никель не являются катализаторами роста нанотрубок. Это связано с высокой поверхностной энергией мелкодисперсных систем. Рост углеродных нанотрубок идёт по принципу гетерофазной нуклеации, то есть происходит на поверхности наночастицы с такой поверхностной энергией, которая больше или равна энергии активации реакции перехода углерода в углеродную нанотрубку. В зависимости от диаметра частиц катализатора могут расти исключительно однослойные либо многослойные углеродные нанотрубки. На практике данное свойство широко используется в технологии создания зондов для сканирующей зондовой микроскопии. Задавая положение катализатора на конце кремниевой иглы кантилевера, можно вырастить нанотрубку, которая значительно улучшит воспроизводимость характеристик и разрешающую способность микроскопа как при сканировании, так и при проведении литографических операций [22, 63].
|