Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекции по ТОЭ/ №59 Методы составления характеристического уравнения.





Свободный режим схемы не зависит от источников энергии, определяется только структурой схемы и параметрами ее элементов. Из этого следует, что корни характеристического уравнения p1, p2,…, pn будут одинаковыми для всех переменных функций (токов и напряжений).

Характеристическое уравнение можно составить различными методами. Первый метод – классический, когда характеристическое уравнение составляется строго в соответствии с дифференциальным по классической схеме. При расчете переходных процессов в сложной схеме составляется система из “m” дифференциальных уравнений по законам Кирхгофа для схемы цепи после коммутации. Так как корни характеристического уравнения являются общими для всех переменных, то решение системы дифференциальных уравнений выполняется относительно любой переменной (по выбору). В результате решения получают неоднородное дифференциальное уравнение с одной переменной. Составляют характеристическое уравнение в соответствии с полученным дифференциальным и определяют его корни.

Пример. Составить характеристическое уравнение и определить его корни для переменных в схеме рис. 59.1. Параметры элементов заданы в общем виде.

Система дифференциальных уравнений по законам Кирхгофа:

Решим систему уравнений относительно переменной i3, в результате получим неоднородное дифференциальное уравнение:

Характеристическое уравнение и его корень:

Второй способ составления характеристического уравнения заключается в приравнивании нулю главного определителя системы уравнений Кирхгофа для свободных составляющих переменных.

Пусть свободная составляющая произвольного тока имеет вид iксвkept, тогда:

Система уравнений для свободных составляющих получается из системы дифференциальных уравнений Кирхгофа путем замены производных от переменных на множитель р, а интегралов – на 1/р. Для рассматриваемого примера система уравнений для свободных составляющих имеет вид:

Характеристическое уравнение и его корень:

Третий способ составления характеристического уравнения (инженерный) заключается в приравнивании нулю входного операторного сопротивления схемы относительно любой ее ветви.

Операторное сопротивление элемента получается из его комплексного сопротивления путем простой замены множителя jω на р, следовательно

Для рассматриваемого примера:

Третий способ является наиболее простым и экономичным, поэтому он чаще других применяется при расчете переходных процессов в электрических цепях.

Корни характеристического уравнения характеризуют свободный переходной процесс в схеме без источников энергии. Такой процесс протекает с потерями энергии и поэтому затухает во времени. Из этого следует, что корни характеристического уравнения должны быть отрицательными или иметь отрицательную вещественную часть.

В общем случае порядок дифференциального уравнения, которым описывается переходный процесс в схеме, и, следовательно, степень характеристического уравнения и число его корней равны числу независимых начальных условий, или числу независимых накопителей энергии (катушек L и конденсаторов C). Если в схеме цепи содержатся параллельно включенные конденсаторы С1, С2,… или последовательно включенные катушки L1, L2,…, то при расчете переходных процессов они должны быть заменены одним эквивалентным элементом СЭ =С1 +С2+… или LЭ =L1 +L2+…

Таким образом, общий вид решения для любой переменной при расчете переходного процесса может быть составлен только из анализа схемы цепи, без составления и решения системы дифференциальных уравнений.

Для рассматриваемого выше примера:

<div><img src="//mc.yandex.ru/watch/9962440" style="position:absolute; left:-9999px;" alt="" /></div>







Дата добавления: 2015-09-04; просмотров: 1701. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия