Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет частотных характеристик электрических цепей.





MATLAB и его пакеты расширения ориентированы прежде всего ориентированы на цифровую обработку сигналов, поэтому функции, связанные с расчетом аналоговых цепей, рассматриваются как вспомогательные. В основном они предназначены для вызова из других функций, использующих аналоговые прототипы при синтезе цифровых фильтров. Однако и сами эти функции могут быть весьма полезны.

Прежде всего, рассмотрим математическое описание линейных систем, частотные характеристики которых нам необходимо исследовать. Такие линейные системы можно представить в виде четырехполюсника с двумя входными и двумя выходными зажимами (рис.6):

Рис.6

В общем случае, существуют различные эквивалентные способы представления характеристик линейных систем, реализуемых в виде цепей с сосредоточенными параметрами. Но наиболее распространенным является описание с помощью комплексного коэффициента передачи, который представляет собой отношение комплексных выходного и входного напряжений:

где - передаточная АЧХ; - передаточная ФЧХ.

В не зависимости от параметров электрической цепи, для линейных систем комплексный коэффициент передачи всегда может быть представлен в виде:

где , – некоторые постоянные коэффициенты, определяемые параметрами цепи. Необходимо также отметить, что максимальный порядок многочлена числителя не может превышать максимального порядка многочлена стоящего в знаменателе, т.е. .

Если мы введем мнимый аргумент и подставим в выражение для комплексного коэффициента передачи, то получим выражение для передаточной функции линейной системы:

Порядок многочленов в числителе и знаменателе и , а также постоянные коэффициенты , непосредственно зависят от реализации электрической схемы четырехполюсника и могут быть найдены различными способами: с помощью законов Кирхгофа, методов контурных токов, узловых напряжений в комплексной форме или других методов расчета цепей синусоидального тока. Далее мы рассмотрим на конкретном примере, как получить передаточную функцию, а сейчас же сосредоточим внимание на реализацию расчета и построения АЧХ и ФЧХ в MATLAB.

Предположим, что линейная система задается передаточной функцией:

Тогда расчет в MATLAB не взывает труда:

w=0:0.1:10;

s=j*w;

b=[1 3 3 1];

a=[1 -3 4 -2 1];

H=polyval(b,s)./polyval(a,s);

subplot(2,1,1); plot(w,abs(H)); grid on;

subplot(2,1,2); plot(w,angle(H)*180/pi); grid on;

Результатом работы этого скрипта будет графическое окно с графиками, показанными на рис. 7. Верхний – АЧХ, нижний – ФЧХ.

Рис.7

Как видно из рис. 7 ФЧХ имеет разрывы (скачки). Те из них, величина которых равна 180º, действительно являются скачками ФЧХ, а остальные, величина которых составляет 360º, являются «фиктивными». Они возникают из-за того, что результаты вычисления фазы комплексного числа всегда лежа в диапазоне ±180º. Наличие этих многочисленных скачков затрудняет восприятие истинной формы ФЧХ и маскирует скачки «настоящие». Избавиться от лишних разрывов позволяет функция unwrap. Продемонстрируем ее использование:

w=0:0.1:10;

s=j*w;

b=[1 3 3 1];

a=[1 -3 4 -2 1];

H=polyval(b,s)./polyval(a,s);

subplot(2,1,1); plot(w,abs(H)); grid on;

phi=unwrap(angle(H));

subplot(2,1,2); plot(w,phi*180/pi); grid on;

Рис.8

 

Вычисление и построение АЧХ и ФЧХ, можно также осуществить с помощью функции freqs. В простейшем идее она имеет следующий синтаксис:

freqs(b,a)

Здесь b и a – векторы коэффициентов полиномов, соответственно числителя и знаменателя функции передачи. Для расчета характеристики по умолчанию выбираются 200 частот, логарифмически равномерно распределенных в диапазоне от 0,1 до 10. При отсутствии выходных параметров функция freqs строит графики АЧХ и ФЧХ. АЧХ – выводится в логарифмическом масштабе (но без пересчета в децибелы), ФЧХ - градусах. Построим АЧХ и ФЧХ из прошлого примера с помощью функция freqs:

b=[1 3 3 1];

a=[1 -3 4 -2 1];

freqs(b,a);

Рис.9

Чтобы вместо построения графика получить вектор рассчитанных значений комплексного коэффициента передачи, нужно присвоить результат, возвращаемый функцией freqs. В простейшем идее она имеет следующий синтаксис:

H=freqs(b,a);

Если использовать второй выходной параметр, то в нем функция возвратит вектор частот, для которых рассчитаны значения характеристики:

[H,w]=freqs(b,a);

Также можно принудительно задать частоты для анализа – с помощью третьего входного параметра:

H=freqs(b,a,w);

Приведем пример использования функции freq результатом которого будет графики, представленные на рис. 8:

w=0:0.1:10;

b=[1 3 3 1];

a=[1 -3 4 -2 1];

H=freqs(b,a,w);

subplot(2,1,1); plot(w,abs(H)); grid on;

phi=unwrap(angle(H));

subplot(2,1,2); plot(w,phi*180/pi); grid on;

 

 

Приведем пример расчета реальной цепи, представленной на рис. 10

 

Рис.10

 

Комплексные сопротивления для представленной схемы:

 

Для определения передаточной функции воспользуемся методом узловых потенциалов. Для этого запишем систему узловых уравнений:

где соответствующие компоненты определяются как:

Здесь - собственная комплексная проводимость i -узла;

- общая комплексная проводимость между i -м и k -м узлами;

- комплексная проводимость ветвей цепи;

- токи, связанные с узлами

Запишем систем узловых напряжений в виде:

или

Вводя коэффициенты передачи и получим:

Выражая из системы интересующий нас коэффициент передачи, получим:

Итак, имеем для значений =1Ом; =2Ом; =1Ф; =1Гн

Решение всей задачи в MATLAB:

syms R1 R2 C1 L1 s

Z=[R1, R2, 1/(s*C1), s*L1];

Y=1./Z;

YY=[Y(1)+Y(2)+Y(3), -Y(3);

-Y(3), Y(2)+Y(4)];

iu=[Y(1); 0];

KK=YY\iu;

R1=1;R2=2;C1=1;L1=2;

KK=subs(KK);

[n d]=numden(KK(2));

b=sym2poly(n);

a=sym2poly(d);

freqs(b,a);

 

Рис.11

 







Дата добавления: 2015-09-04; просмотров: 3573. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия