Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Моменты инерции сечения. В дополнение к статическим мо­ментам в системе координат x0y (рис





Рис. 3.3

В дополнение к статическим мо­ментам в системе координат x 0 y (рис. 3.1)рассмотрим три интегральных выражения:

(3.7)

Первые два интегральных выраже­ния называются осевыми моментами инерции относительно осей x и y, а третье - центробежным моментом инерции сечения относительно осей x, y.

Для сечений, состоящих из n- числа областей (рис. 3.3), фор­мулы (3.7) по аналогии с (3.6) будут иметь вид:

Рассмотрим, как изменяются моменты инерции сечения при параллельном переносе координатных осей x и y (см. рис. 3.2). Преобразуя формулы (3.7) с учетом выражения (3.2), получим:

(3.8)

Если предположить, что оси x 1 и y 1 (см. рис. 3.2) являются цен­тральными, тогда и выражения (3.8) упрощаются и принимают вид:

(3.9)

Рис. 3.4

Определим осевые моменты инерции прямоугольника относительно осей x и y, проходящих через его центр тяжести (рис. 3.4). В качестве элементарной пло­щадки dF возьмем полоску шириной b и высотой dy (рис. 3.4). Тогда будем иметь:

Аналогичным образом можно установить, что .

Для систем, рассматриваемых в полярной системе координат (рис. 3.5, а), вводится также полярный момент инерции:

.

где r - радиус-вектор точки тела в заданной полярной системе ко­ординат.

 

 

Рис. 3.5

Вычислим полярный момент инерции круга радиуса R. На рис. 3.5, a показана элементарная площадка, очерченная двумя ра­диусами и двумя концентрическими поверхностями, площадью

dF = r d r d j.

Интегрирование по площади заменим двойным интегрировани­ем:

.

Hайдем зависимость между полярным и осевыми моментами инерции для круга. Из геометрии видно (рис. 3.5, б), что

r2 = x 2 + y 2,

следовательно,

.

Так как оси x и y для круга равнозначны, то Ix = Iy = .

Полярный момент инерции кольца может быть найден как разность моментов инерции двух кругов: наружного (радиусом R) и внутреннего (радиусом r):

.







Дата добавления: 2015-09-04; просмотров: 414. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия