Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Электрические сигналы. Временное и спектральное представление





Информация - это сообщение о новом событии, передаваемом от источника к потребителю информации, в качестве которого могут выступать как люди, так и аппараты.

В электронике носителями информации являются электрические сигналы - изменение во времени параметров электромагнитного поля.

Далее будут рассматриваться сигналы в виде изменения во времени электрического напряжения (тока).

Аналитически сигналы можно описать двумя способами: представлением во временной области (функция времени) - S (t) или разложением в виде суммы элементарных колебаний (спектра).

Важнейшей характеристикой сигнала во временном представлении является его периодичность. Периодом сигнала Т является отрезок времени, для которого справедливо равенство

Рис. 1.1. Временное представление периодического сигнала пилообразной формы

S(t+nT) = S(t), n=0,1,2,...

На рис. 1.1 изображен периодический сигнал пилообразного типа

.

На рис. 1.2 изображен гармонический сигнал с начальной фазой j.

.

Рис. 1.2. Временное представление гармони- ческого сигнала с начальной фазой j

Спектральное представление сигнала в виде суммы элементарных колебаний может быть приведено с помощью широкого класса полиномов и функций: Лежандра, Чебышева, Лагерра, Эрмита, Хаара, Радемахера, Уолша и др.

Однако для спектрального представления периодических сигналов наибольшее практическое применение нашло разложение в виде суммы гармонических составляющих (гармоник) - ряда Фурье:

, (1.1)

где – круговая частота первой гармоники.

Коэффициенты an, bn вычисляются по формулам:

Амплитуда An и фаза jn n-гармоники выражаются через an и bn:

.

Совокупность коэффициентов An ряда Фурье называется частотным спектром периодического сигнала.

Как следует из (1.1) частотный спектр периодического сигнала носит дискретный характер, так как состоит из отдельных “линий” высотой An, соответствующих дискретным частотам 0, w1, w2, w2=2w1, w3=3w1 и т.д. (рис. 1.3).

Рис. 1.3. Пример частотного спектра сигнала

Хотя ряд Фурье и содержит бесконечное число гармоник, амплитуды этих гармоник у большинства реальных сигналов убывают с увеличением номера гармоник n. Физически это означает, что влияние высших гармоник на общую энергию сигнала и его форму может быть незначительным, что позволяет при анализе искусственно “урезать” спектр, ограничившись наиболее “влиятельными” низкими гармониками.

Частотный спектр пилообразного напряжения, изображенного на рис. 1.1, имеет вид

Рис. 1.4. Форма пилообразного сигнала при удержании пяти первых гармоник спектра

Как видно, амплитуды гармоник убывают с частотой по закону 1/n. При “удержании” в спектре, например, пяти первых гармоник форма сигнала принимает вид, изображенный на рис. 1.4 (сплошная линия), для многих случаев такая погрешность представления сигнала может оказаться приемлемой.

К сожалению, чем больше скорость изменения сигнала во времени, тем медленнее снижаются амплитуды гармоник по мере увеличения n. Для периодической (с периодом Т) последовательности прямоугольных импульсов с амплитудой Е и длительностью t амплитуда n-ой гармоники определяется по соотношению

и при , когда sinx® х

то есть амплитуды всех гармоник (от 0 до ¥) становятся одинаковыми, спектр становится равномерным.

Увеличение ширины спектра при увеличении скорости изменения сигнала является основным препятствием для увеличения скорости передачи информации по каналам связи.

Разложение сигнала на гармонические составляющие (ряд Фурье) нашло широкое практическое применение по той причине, что гармоническое колебание является единственным физически существующим сигналом, форма которого не меняется при прохождении через линейную цепь (изменяется только амплитуда и фаза). Это свойство делает возможным при определении установившейся реакции цепи на гармоническое воздействие применение удобного символического метода - метода комплексных амплитуд.

Рис. 1.5. Возможный вид АЧХ цепи

Как известно из электротехники, амплитуду выходного гармонического колебания можно определить по амплитудно-частотной характеристике цепи (АЧХ), которая может быть определена как аналитически, так и (что очень важно для сложных цепей) экспериментально. АЧХ - это зависимость

отношения амплитуды выходного и входного колебания (К) от частоты, которая может, например, иметь вид, представленный на рис. 1.5.

В пределах полосы частот (от wн до wв) АЧХ имеет равномерный характер. Это значит, что все гармоники сложного сигнала, “умещающегося” на этом частотном отрезке, пройдут через цепь практически с одинаковым усилением (или ослаблением, если К<1), что приведет лишь к изменению масштаба сигнала, а форма его останется неизменной. Если же полоса равномерной передачи цепи много меньше ширины спектра входного сигнала, то сигнал пройдет через такую цепь с большими искажениями, называемыми частотными.

Так, если через цепь, имеющую АЧХ (рис. 1.5), пропустить периодическую последовательность прямоугольных импульсов S1 (t), то выходной сигнал S2 (t) будет значительно отличаться по форме от входного (рис. 1.6).

Рис. 1.6. Искажения сигнала, прошедшего через цепь с “узкой” полосой пропускания

Таким образом, введение понятия частотного спектра сигнала позволяет сопоставить свойства канала связи (его широкополосность) с шириной спектра сигнала. Например, телевизионный сигнал, ширина спектра которого превышает 10·106Гц, невозможно передать по телефонной проводной паре, полоса пропускания которой составляет всего несколько десятков килогерц.

Для непериодического сигнала можно при анализе полагать Т®¥. Это означает, что как значение частоты первой гармоники, так и интервал между соседними гармониками будет стремиться к нулю, т.е. спектр становится сплошным, а амплитуды гармоник (коэффициенты ряда Фурье) станут бесконечно малыми.

  Рис. 1.7. Спектральная плотность S(w) одиночного импульса

 

Предельный переход от дискретного ряда Фурье к сигналу с Т®¥ описывается интегралом Фурье

,

где - спектральная плотность, физически означающая распределение мощности сигнала по диапазону частот.

На рис. 1.7 для примера приведена спектральная плотность одиночного импульса с амплитудой А и длительностью tи.

 

 







Дата добавления: 2015-09-04; просмотров: 4060. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия