Постановка задачи. Пусть информация о психологических особенностях человека содержится в я-мерном векторе ν (ν1
Пусть информация о психологических особенностях человека содержится в я-мерном векторе ν (ν1, ν2,..., νn). Каждое из νi (i= 1, 2,..., n) – число, полученное при помощи той или другой методики (среди них могут быть определенным образом закодированы и качественные характеристики чело века). В дальнейшем компоненты ν будут называться признаками. Выбор признаков обычно производится с учетом психологических требований к профессиональной пригодности. Предлагаемый алгоритм позволяет отбросить те из используемых признаков, которые оказываются неинформативными для данной конкретной задачи определения профессиональной пригодности. Предполагается, что группам лиц, с одной стороны, пригодных (группа «А»), а с другой стороны, непригодных (группа «В») к рассматриваемой деятельности соответствуют два класса я-мерных векторов {νΑ} и {vB}, которые могут сильно пересекаться, но статистически различны. В дальнейшем всегда будем считать, что {vA} – класс векторов, характеризующих пригодных к данной деятельности субъектов. С математической точки зрения задача определения профессиональной пригодности заключается в отнесении с определенной вероятностью ошибки вектора (ν1, ν2,..., νη) κ одному из двух классов – «А» или «В». Имеется много различных методов решения этой задачи. Во всех методах необходим этап «обучения»: статистический анализ уже имеющегося опыта. Для целей определения профессиональной пригодности они не получили большого распространения – одни из-за крайней громоздкости и сложности применения даже при помощи вычислительных машин, другие потому, что оказались не очень эффективными. Успех классификации по многим признакам в задачах диагностики зависит от информативности этих признаков и способа интеграции информации. Этот способ интеграции должен быть: 1) простым в вычислительном отношении и доступным при использовании; 2) малочувствительным к отсутствию какого-либо признака; 3) в какой-то мере инвариантным к сдвигу распределений признаков (последнее существенно в силу необходимости считаться с разными методическими условиями получения одного и того же признака). Этим требованиям в значительной степени удовлетворяет алгоритм, основанный на модификации последовательного статистического анализа отношения вероятностей [58]. Он был предложен для диагностических целей и оказался весьма эффективным при дифференциальной диагностике ряда заболеваний по таким признакам, на основании которых постановка диагноза оказывалась затрудненной даже для опытных специалистов [63]. Для целей определения профессиональной пригодности этот алгоритм должен быть еще более эффективным, так как психологические признаки ν1, ν2,..., νη являются слабо статистически зависимыми, а при этих условиях последовательный анализ отношения вероятностей является оптимальной процедурой для классификации на два класса [64].
|