Виды и классификация бетонов
В соответствии с СТБ 1310-2002 бетоны классифицируют по назначению (конструкционные, специальные), виду вяжущего (цементные, известковые, силикатные, шлаковые, гипсовые и т.д.), виду заполнителя (плотный, пористый, специальный), структуре (плотные, поризованные, ячеистые, крупнопористые) и условию твердения (естественное, термовлажностное, автоклавное, при отрицательной температуре и тепловой обработке без использования паровоздушной среды, контактирующей с бетоном). В зависимости от средней плотности бетоны можно подразделить на 3 3 тяжелые (от 2000 до 2600 кг/м) и легкие (от 200 до 2000 кг/м). К тяжелым бетонам относят конструкционные цементные на плотных заполнителях; мелкозернистые, эксплуатируемые при систематическом воздействии температуры от плюс 50 оС до минус 70 оС, и бетоны специального назначения. При получении конструкционного тяжелого бетона в качестве вяжущего используют разнообразные клинкерные портландцементы: рядовой, шлаковый, пуццолановый. Заполнителями служат дробленые плотные горные породы или природные рыхлые зернистые материалы: песок кварцевый, щебень, гравий и гравийно-песчаная смесь. Для улучшения технологических свойств бетонной смеси и повышения долговечности бетонных и железобетонных конструкций вводят соответствующие химические добавки. С использованием тяжелого бетона получают монолитные гидротехнические сооружения, фундаменты, дорожные покрытия, твердеющие в естественных условиях и сборные, обычные и преднапряженные, подвергаемые термообработке (балки, фермы, плиты покрытий и т.д.). Если в качестве минерального вяжущего применяют цементы, то бетон набирает прочность в условиях естественного твердения или термо- влажностной обработки при атмосферном давлении. Если вяжущим служит известь в сочетании с тонкомолотым кремнеземистым компонентом (кварцевым песком, шлаком, золой), то изделия выдерживают в автоклавах при высоких температурах (до 200 оС) и повышенном давлении (до 1,6 атм). Полученный бетон прочностью от 15 до 60 МПа называют силикатным. В состав мелкозернистых бетонов входят минеральное вяжущее и мелкий заполнитель - песок определенной крупности. Эти бетоны обладают однородностью свойств, повышенной водонепроницаемостью и морозостойкостью, прочностью на изгиб и растяжение. Их применяют при получении труб, дорожных покрытий, тротуарных плит и бортовых камней методом объемного сухого вибропрессования, а также таких тонкостенных конструкций, как перегородки, плиты перекрытий. Используя сетчатое армирование, возводят пространственные армоцементные конструкции - оболочки сложной конфигурации для покрытия больших площадей. Все увереннее в производство строительных материалов внедряются полимеры: как модифицирующие добавки, так и полноценные компоненты сложных по составу материалов. К первым можно отнести полимерсили- катные, полимерцементные бетоны, когда в качестве вяжущего используют композицию из органического полимера (фуранового, поливинилаце- татного, кремнийорганического) и неорганического вяжущего (жидкого стекла, портландцемента, гипса). Путем введения полимерной добавки повышают водостойкость, износостойкость, трещиностойкость, растяжимость и коррозионную стойкость бетона. Наиболее широкое применение получили полимерцементные и полимерсиликатные композиции для покрытия полов и дорог, в конструкциях, работающих на растяжение (балки, в том числе преднапряженные), при изготовлении панелей междуэтажных перекрытий химических предприятий и складов минеральных удобрений. Разработана технология изготовления балок, колонн, плит перекрытия из полимербетона, армированного стальной (сталеполимербетон), стеклопластиковой (стеклопластобетоны) или дисперсной (фиброполимер- бетоны) арматурой, в которых в качестве вяжущего использованы полимерные смолы. От цементных бетонов полимербетоны отличаются повышенной прочностью при растяжении, высокой химической стойкостью, водонепроницаемостью. В то же время полимербетонам присущи такие недостатки, как значительная усадка при твердении, ползучесть под нагрузкой, пониженная тепло- и огнестойкость, обусловленные органической природой связующего. Анализ свойств определил рациональную область применения этого материала для возведения несущих и самонесущих химически стойких конструкций на предприятиях цветной металлургии, химической, пищевой, целлюлозно-бумажной промышленности. Из сталеполимербетона изготавливают шахтные стойки, перемычки для крепления шахтных выработок, коллекторные кольца, опоры линий электропередач, железнодорожные шпалы. Полимербетон применяют для водосборов ирригационных плотин, лотков, канализационных труб и колодцев, дорожных плит и покрытий пола промышленных зданий, опорных плит для крепления технологических коммуникаций. Одним из перспективных направлений развития минеральных вяжущих является совершенствование и широкое внедрение высокоактивного бесклинкерного шлакощелочного цемента. Этот вид минерального гидравлического вяжущего, разработанный киевским профессором В. Д. Глухов- ским, получают на базе доменных гранулированных шлаков и едких щелочей. Шлакощелочной цемент обладает в 2 - 3 раза большей прочностью при сжатии и растяжении по сравнению с портландцементом, что позволяет получить бетоны прочностью 100 - 140 МПа, повышенной соле- стойкости, водонепроницаемости (до W20) и морозостойкости (до F1000). Наличие щелочей в бетоне обеспечивает ему твердение при отрицательной температуре, причем, как показали результаты исследований и практика применения, для получения этого вида цемента можно использовать добавки стекловидных отходов различных производств, в том числе доменные, сталелитейные, термофосфорные, ваграночные шлаки, выход которых составляет более 80 млн. тонн в год. Щелочным компонентом бетона могут быть не только специальные щелочные продукты, но и щелочесодержащие отходы фенольного, суперфосфатного, целлюлозно-бумажного и других производств. В качестве заполнителей используют как традиционные, так и (что значительно эффективнее) мелкозернистые грунты: пески, супеси, легкие суглинки. В этом бетоне песчаные частицы создают жесткий каркас в цементном камне аналогично крупным фракциям щебня и гравия в обычных бетонах. Пылева- тые частицы заполняют межзерновые пространства между песчаными и способствуют уплотнению тела бетона. Глинистый компонент, взаимодействуя со щелочами, является дополнительным вяжущим, цементирующим пылеватые и песчаные составляющие. Таким образом, моделируются те процессы, которые происходят в природе. Бетон твердеет как в естественных условиях, так и при термовлажностной и автоклавной обработке. Шлакощелочной бетон можно использовать во всех ответственных строительных конструкциях, но наиболее рационально - в гидротехнических сооружениях и там, где требуется высокая коррозионная стойкость. В технологии производства преднапряженного железобетона особое место занимает бетон на напрягающем цементе. Этот вид вяжущего обеспечивает за счет использования специального сульфоалюминатного клинкера или путем использования в качестве добавок сланцевых зол ТЭС, интенсивное расширение цементного камня и самонапряжение железобетона при формовке в ограниченном объеме. Для достижения больших величин самонапряжения необходимо использовать бетонные смеси с минимальным водоцементным отношением, что усложняет технологию получения изделий. Кроме того, цемент обладает короткими сроками схватывания. Все это привело к разработке новых технологий получения изделий. Например, напорные трубы формуют методом торкретирования, путем подачи бетонной смеси под давлением на гладкий металлический сердечник. Такой способ обеспечивает получение труб высокой плотности, с идеально гладкой внутренней поверхностью. Для изготовления самонапряженных труб малого диаметра применяют технологию вибропродавливания. Напрягающий цемент используют также для покрытия дорог, аэродромов, в гидротехнических и подземных сооружениях - там, где к конструкции предъявляют высокие требования по трещиностойкости. Достичь высокой трещиностойкости и прочности бетона можно также путем равномерного распределения по всему сечению материала неорганических или органических коротковолокнистых материалов (фибр). Так, при объемном дисперсном армировании стеклянными волокнами можно получить конструкционные стеклоцементные композиции, удельная прочность которых в 1,5 раза выше прочности стали, в 4 - 5 раз - ар- моцемента, а плотность ниже плотности алюминиевых сплавов в 1,5 - 2 раза. Стеклоцементные композиционные материалы не горючи, не токсичны, не подвержены воздействию биологической агрессии. Использование стеклоцементных композиций вместо железобетона позволяет снизить стоимость конструкций в 2 - 3 раза, массу - в 8 - 10 раз, полностью исключить расход металла, мелкого и крупного заполнителя, а также сократить расход цемента в 2 - 4 раза. Как показала практика строительства, эти материалы выгодно использовать в тонкостенных несущих конструкциях типа оболочек, коробчатых и гофрированных наружных панелях и перегородках, резервуарах, а также для производства сборных железобетонных конструкций с комбинированным армированием. Кроме цемента в подобных композициях можно использовать гипсовые, магнезиальные вяжущие. Армирующим составляющим наряду со стеклянными, базальтовыми, полимерными могут быть также стальные волокна. Армирование бетона путем введения стальных фибр (сталефибробе- тон) позволяет повысить трещиностойкость, сопротивление динамическим нагрузкам (ударным, сейсмическим), износостойкость, морозостойкость и водонепроницаемость. Российскими учеными предложена технология получения объемных тонкостенных конструкций методом сгиба с виброукатыванием фиброармированной смеси. Угол сгиба не должен превышать 20о. Таким образом можно получить сферические сталефибробетонные оболочки для создания домов нестандартной архитектуры, крупноразмерные элементы облицовки стеновых панелей, эффективные безрулонные покрытия домов, объемные блоки призматической формы для жилищного домостроения. Разнообразие бетонных облицовочных материалов достигается за счет использования специальных технологий. Одна из них предусматривает нанесение на поверхность свежеуложенного бетона пигментированного порошкообразного материала с последующим вдавливанием текстурных штампов различного рисунка. После снятия штампов и твердения бетона на его поверхность с целью повышения износостойкости, морозостойкости и коррозионной стойкости наносят высоконаполненные акриловые композиции. Полученный штампованный бетон имеет декоративную поверхность под природный пиленый или рваный камень, плитняк, кирпич и т. д. Вторая технология получения плит из декоративного бетона использует метод монолитного литья с имитацией поверхности камня, сланца, дерева. Получаемая многоцветная фактура создается за счет введения красителей, взаимодействующих с минералами цемента. Для повышения долговечности сверху изделия, применяемые для внутренней и наружной отделки стен, полов и тротуаров, защищают прозрачным полимерным покрытием. Специальные виды тяжелого бетона, предназначенные для работы в особых условиях, представлены в табл. 6.5.
3 Легкие бетоны с плотностью менее 2000 кг/м можно получить за счет использования пористых заполнителей (легкий бетон), поризацией межзернового пространства (поризованный бетон) или мелкозернистого бетона в объеме (ячеистый бетон) путем введения газо- и пенообразую- щих добавок, а также применением однофракционного крупного заполнителя при отсутствии мелкого и ограниченного расхода цемента (крупнопористый бетон). Вид и применение легкого бетона определяют двумя показателями: пределом прочности на сжатие в 28 суток естественного твердения и средней плотностью. По назначению легкие бетоны подразделяют на конструкционные для изготовления таких несущих конструкций, как плиты перекрытий; конструкционно-теплоизоляционные, используемые в производстве ограждающих стеновых конструкций, плит покрытий, и теплоизоляционные, основное назначение которых - теплозащита зданий и сооружений, трубопроводов и технологического оборудования. В зависимости от применяемого крупного пористого заполнителя легкие бетоны подразделяют на керамзитобетон, перлитобетон и т.д. Их назначение представлено в табл. 6.6. Для приготовления легких бетонов с плотной межзерновой структурой, пористость которой не превышает 7 %, используют все виды минеральных вяжущих и пористые заполнители. Так как прочность пористого заполнителя всегда меньше прочности цементного камня, то его введение в бетонную смесь приводит к понижению плотности и прочности бетона. Эта зависимость проявляется более сильно при увеличении содержания легкого заполнителя и уменьшении его плотности. За счет снижения В/Ц, применения более активного цемента, добавок, повышающих прочность цементного камня, можно повысить общую прочность бетона только до какого-то граничного значения, определяемого видом заполнителя, после которого влияние заполнителя становится определяющим и любые последующие технологические приемы неэффективны. Взаимосвязь между прочностью пористых заполнителей и прочностью бетона представлена в табл. 6.7.
Важным свойством легкого бетона является его теплопроводность, по которой рассчитывают толщину ограждающих конструкций. Увеличение содержания легкого заполнителя, уменьшение его плотности приводят к понижению коэффициента теплопроводности бетона, улучшению его теплотехнических свойств. Из-за своей высокой пористости легкий заполнитель оказывает большее, по сравнению с плотным, влияние не только на прочность бетона, но и на свойства бетонной смеси. Обладая высоким во- допоглощением, пористый заполнитель значительно повышает водопо- требность бетонной смеси, которая увеличивается при уменьшении плотности. Вследствие этого свойства заполнитель активно участвует в струк- турообразовании, т.к. интенсивное поглощение воды в момент приготовления бетонной смеси переходит при последующем дефиците воды в обратный процесс постепенного возвращения ее и участия в гидратации. В результате наблюдаемого влагопереноса ширина контактного слоя и прочность сцепления с цементным камнем у пористого заполнителя выше. Поэтому легкий бетон может обладать водонепроницаемостью до W8...12 и морозостойкостью F400...800, что позволяет использовать его в гидротехническом строительстве и мостостроении. Более высокая деформатив- ность заполнителя компенсирует усадку цементного камня при твердении и поэтому общие усадочные деформации в легком бетоне не наблюдаются, несмотря на повышенный расход цемента. Поризованный цементный бетон является разновидностью легкого бетона, который получают путем насыщения газом или воздухом цементного камня или цементно-песчаного раствора, заполняющих пустоты между крупным пористым заполнителем. Для поризации бетонов применяют несколько технологий. По одной из них предварительно подготовленную устойчивую пену, полученную в результате механического растворения природного или синтетического пенообразователя в воде, смешивают с цементом и крупным пористым заполнителем, например, керамзитом, - керамзитопенобетон. При производстве поризованного газобетона газооб- разователь - алюминиевую пудру, представляющую собой тонкомолотый алюминий, смешивают с цементным пластичным тестом или цементно- песчаным раствором, в которые после тщательного перемешивания вводят крупный пористый заполнитель, например, шлаковую пемзу, - шлакогазо- бетон. Ячеистую структуру обеспечивает полученный в результате реакции добавки с продуктом гидратации цемента - гидроксидом кальция газообразный водород, равномерно распределенный по всему объему. Прочность поризованных бетонов в зависимости от объема пор 7 - 25 % и пористости применяемого заполнителя составляет 5 - 10 МПа, плотность - 700 - 1400 кг/м3. Ячеистый бетон, содержащий по всему объему до 85 % пор размером 1 - 1,5 мкм, является разновидностью поризованного бетона, в котором отсутствует крупный заполнитель. Ячеистые бетоны получают в результате твердения вспученной порообразователем смеси минерального вяжущего, тонкомолотого кремнеземистого наполнителя и воды. В зависимости от вида применяемых вяжущих, кремнеземистых компонентов (песок или зола) и порообразователей (газ или пена) ячеистые бетоны классифицируют следующим образом: - цементные на цементном вяжущем с возможным добавлением извести (газобетон, пенобетон и газозолобетон, пенозолобетон); - силикатные - на известковом вяжущем, в том числе с добавкой гипса, цемента или шлака (газосиликат, пеносиликат, газозолосиликат, пе- нозолосиликат); - известково-цементные - на смешанном вяжущем (газосиликатобетон, пеносиликатобетон и т.д.); - шлаковые - на шлаковом вяжущем в виде молотого гранулированного шлака в сочетании с известью, гипсом или щелочью (газошлакобетон, пенозолошлакобетон и т.д.); - сланцевые - на сланцезольном вяжущем в виде высокоосновной золы (газосланцезолобетон и пеносланцезолобетон). По условию твердения ячеистые бетоны могут быть автоклавные (силикатные) и неавтоклавные, твердеющие при термовлажност- ной обработке (цементные) или естественных условиях (гипсовые). По назначению их подразделяют на теплоизоляционные плотностью менее 600 кг/м, применяемые в виде теплоизолирующих и акустических плит; конструкционно-теплоизоляционные плотностью D 600 - 900 кг/м, прочностью 1,5 - 10 МПа для выполнения ограждающих конструкций; конструкционные плотностью D 1000 - 1200 кг/м прочностью 7,5 - 20 МПа для изготовления несущих конструкций, к которым предъявляют требования по акустическим и теплоизоляционным свойствам - плиты перекрытий. Марки по морозостойкости для бетонных и железобетонных элементов конструкций из ячеистого бетона должны соответствовать, в зависимости от климатических условий эксплуатации, от F15 до F100. В состав беспесчаного крупнопористого бетона вводят гравий или щебень крупностью 5 - 20 мм, портландцемент М300...400 в количестве 70 - 150 кг/м и воду. Отсутствие песка и ограниченный расход цемента позволяют получить пористый бетон низкой теплопроводности, прочностью 15 - 75 кгс/см. Из крупнопористого бетона на плотном заполнителе возводят монолитные наружные стены зданий, изготавливают крупные стеновые блоки. Стены из крупнопористого бетона необходимо оштукатуривать с двух сторон, чтобы исключить продуваемость. Крупнопористый поризованный бетон на пористом заполнителе имеет небольшую среднюю плотность (500 - 600 кг/м), его используют для получения теплоизоляционных изделий. К разновидностям легкого бетона относится опилкобетон, который может быть использован как для монолитного, так и для блочного возведения зданий до пяти этажей жилого, гражданского и сельскохозяйственного назначения. Технология получения опилкобетонной смеси включает перемешивание опилок хвойных пород, предварительно обработанных специальными составами, предотвращающими горение, гниение и поглощение воды, с цементом и песком до получения однородной массы. При получении стеновых блоков используют вибропрессование и последующую сушку. Рекомендуемые составы представлены в табл. 6.8. Кроме блоков производят конструктивные элементы для изготовления перемычек, оконных и дверных проемов. Из этого же материала можно выполнять литые полы первого этажа и плиты перекрытия. Материал обладает огнестойкостью - 100 мин, хорошими теплоизоляционными свойствами, позволяющими уменьшить толщину наружных стен до 40 см. Таблица 6.8 Рекомендуемые составы опилкобетона
В производстве мелких стеновых камней, блоков и крупноразмерных панелей широкое применение нашел один из видов легкого бетона - гипсобетон, обладающий огнестойкостью, легкостью, хорошими тепло- и звукоизоляционными свойствами. Гипсобетон изготавливают на основе строительного высокопрочного гипса или гипсовых смешанных вяжущих: гипсоцементнопуццолановом, гипсоцементношлаковом, обеспечивающих водостойкость изделий. Для снижения средней плотности и улучшения акустических свойств применяют пористые заполнители и пенообразую- щие добавки. Для повышения прочности на изгиб и уменьшения хрупкости в пластичную массу при ее изготовлении вводят волокнистые компоненты: древесные или синтетические волокна, измельченную макулатуру. Изделия из гипсобетона получают с применением виброуплотнения, вибропроката или путем прессования. Средняя плотность в зависимости от вида применяемого заполнителя, расхода воды составляет 800 - 1000 кг/м, прочность 20 - 50 кгс/см. Вследствие высокой пористости изделий стальная арматура должна быть защищена от коррозии лакокрасочными составами на основе битума или полимерных смол. ИСПОЛЬЗУЕМАЯ НОРМАТИВНАЯ ЛИТЕРАТУРА 1. ГОСТ 4.233-86. Растворы строительные. Номенклатура показателей. 2. ГОСТ 5802-86. Растворы строительные. Методы испытаний. 3. ГОСТ 28013-89. Растворы строительные. Общие технические условия. 4. СТБ 4.202-98. Изделия асбоцементные. Номенклатура показателей. 5. СТБ 1239-2000. Портландцемент для производства асбоцементных изделий. Технические условия. 6. ГОСТ 539-80. Трубы и муфты асбоцементные напорные. Технические условия. 7. ГОСТ 1839-80. Трубы и муфты асбоцементные для безнапорных трубопроводов. Технические условия. 8. ГОСТ 18124-95. Листы асбоцементные плоские. Технические условия. 9. РСН 16-90. Отделка зданий полимерцементными составами. 10.СТБ 4.212-98. Бетоны. Номенклатура показателей. 11.СТБ 4.250-94. Бетонные и железобетонные изделия и конструкции. Номенклатура показателей. 12.СТБ 1163-99. Трубы бетонные и железобетонные безнапорные. Общие технические условиях. 13.СТБ 1187-99. Бетоны легкие. Технические условия. 14.Пособие по проектированию бетонных и железобетонных конструкций из ячеистых бетонов (к СНиП 2.03.01-84). - М., 1986. 15.СНиП 2.03.04-84. Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных и высоких температур. 16.СТБ 1182-99. Бетоны. Правила подбора состава. 17.СТБ 1035-96. Смеси бетонные. Технические условия. 18.СНиП 3.09.01-85. Производство сборных железобетонных конструкций и изделий. 19.СН 529-80. Инструкция по технологии изготовления конструкций и изделий из плотного силикатного бетона. 20.СН 277-80. Инструкция по изготовлению изделий из ячеистого бетона. 21.ГОСТ 12730.5-84. Бетоны. Методы определения водонепроницаемости. 22.ГОСТ 10060.0-95. Бетоны. Методы определения морозостойкости. Общие требования. 23.ГОСТ 10180-90. Бетоны. Методы определения прочности по контрольным образцам. 24. СТБ 1310-2902. Бетоны. Классификация. Общие технические требования. 25. ГОСТ 28570-90. Бетоны. Методы определения прочности по образцам, отобранным из конструкции. 26. Пособие П2-2000 к СНиП 3.03.01-87. Производство бетонных работ на строительной площадке. 27. ГОСТ 18105-86. Бетоны. Правила контроля прочности. 28. СНБ 5.03.01-02. Бетонные и железобетонные конструкции.
|