Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы точечного оценивания





 

Погрешности средств измерений и измерительных каналов средств автоматизации могут быть выражены двумя различными способами: с помощью точечных оценок и с помощью интервальных. К точечным оценкам относится математическое ожидание погрешности и среднеквадратическое отклонение. В качестве интервальной оценки используют интервал погрешности, который охватывает все возможные значения погрешности измерений с вероятностью. Эта вероятность называется доверительной или надежностью оценки погрешности.

Предел допускаемой погрешности можно рассматривать как точечную оценку или как интервальную для доверительной вероятности, равной единице.

Интервальная оценка является более гибкой, поскольку она позволяет указать погрешность измерений в зависимости от того, какая требуется вероятность реализации этой погрешности для конкретных условий эксплуатации средства измерений.

Смысл интервальной оценки погрешности иллюстрируется рис. 4.3. Здесь использованы следующие обозначения: - погрешность измерения; - плотность распределения погрешностей; - функция распределения погрешностей,. Для нормального закона распределения погрешностей (закона Гаусса) плотность распределения центрированной случайной величины описывается функцией, где - среднеквадратическая погрешность.

Если погрешность измерения находится внутри интервала, то вероятность этого события вычисляется как

. (4.35)

В наиболее типичном случае симметричных границ () получим

. (4.36)

Здесь использовано свойство симметрии функции распределения для закона Гаусса.

Таким образом, если задан интервал, который содержит в себе погрешность измеряемого параметра, то вероятность того, что погрешность не выходит за границы интервала, можно найти по формуле (4.36) для нормального закона распределения. Вероятность называют также надежностью оценки погрешности и обозначают символом:

. (4.37)

Для вычисления функции распределения удобно использовать пакеты MathCAD, Matlab. С их помощью из формулы (4.37) несложно найти величину доверительного интервала, если задана величина надежности.

Для доверительная вероятность =68,3%; для =95,3%; для =99,7% и для = 99,994%.

Для увеличения надежности оценки погрешности измерений или для сужения доверительного интервала при заданной надежности можно использовать усреднение результатов многократных измерений. Поскольку оценка среднеквадратической погрешности результата усреднения равна (см. (3.2)), где - среднеквадратическая погрешность средства измерений, - количество однократных измерений, то, подставив в (4.37) вместо величину, получим

. (4.38)

Эта формула позволяет найти количество однократных измерений, которое необходимо усреднить для получения требуемого доверительного интервала при заданной надежности или требуемой надежности при заданном доверительном интервале. Поскольку формула (4.38) задана в неявном виде, для нахождения требуемых неизвестных следует воспользоваться математическими пакетами для компьютерных вычислений.

Следует иметь в виду, что повышение точности путем усреднения результатов многократных измерений имеет множество ограничений. Проблемой использования интервального метода оценки погрешности является необходимость знания закона распределения погрешностей.

Отметим, что доверительные интервалы, полученные из рассеяния множества измерений, никак не учитывают систематическую погрешность измерений. Интересные примеры из истории определения расстояния до Солнца, заряда электрона и др. приводятся в книге [Тутубалин]. Ученые, которые делали эти выдающиеся измерения, указывали доверительные вероятности для оценки точности своих измерений. Однако ни одна из этих оценок не выдержала испытания временем: каждое новое, более точное измерение не укладывается в предсказанный ранее доверительный интервал. Это связано с тем, что систематическую погрешность или наличие ошибки в постановке эксперимента, в учете факторов, о существовании которых мы не знаем, оценить невозможно, не имея более точного измерительного прибора.

 







Дата добавления: 2015-09-04; просмотров: 1012. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия