Корреляционное исследование
Читателю следует обратиться к гл. 6. В ней подробно изложена теория психологических измерений. Детальная характеристика особенностей психологического измерения и тестирования необходима не только сама по себе, но и для того, чтобы можно было подойти к выяснению особенностей наиболее распространенной схемы современного психологического эмпирического исследования — корреляционного. Теория корреляционного исследования, основанная на представлениях о мерах корреляционной связи, разработана К. Пирсоном и подробно излагается в учебниках по математической статистике. Здесь рассматриваются лишь методическ пекты корреляционного психологического исследования. Стратегия проведения корреляционного исследования сходна с квазиэкс ментом. Отличие от квазиэксперимента лишь в том, что управляемое воздей на объект отсутствует. План корреляционного исследования несложен. Иссле тель выдвигает гипотезу о наличии статистической связи между несколькимр хическими свойствами индивида или между определенными внешними уровш психическими состояниями. При этом предположения о причинной зависимое обсуждаются. Корреляционным, называется исследование, проводимое для подтвержд или опровержения гипотезы о статистической связи между несколькими (дву более) переменными. В психологии в качестве переменных могут выступать пс ческие свойства, процессы, состояния и др. «Корреляция» в прямом переводе означает «соотношение». Если изменен» ной переменной сопровождается изменением другой, то можно говорить о корр ции этих переменных. Наличие корреляции двух переменных ничего не говор причинно-следственных зависимостях между ними, но дает возможность выдвш такую гипотезу. Отсутствие же корреляции позволяет отвергнуть гипотезу о причинно-следственной связи переменных. Различают несколько интерпретаций наличия корреляционной связи между двумя измерениями: 1) Прямая корреляционная связь. Уровень одной переменной непосредстве, соответствует уровню другой. Примером является закон Хика: скорость переработки информации пропорциональна логарифму от числа альтернатив. Другой пример: корреляция высокой личностной пластичности и склонности к смене социальных установок. 2) Корреляция, обусловленная 3-й переменной. 2 переменные (а, с) связаны одна с другой через 3-ю (в), не измеренную в ходе исследования. По правилу транзитности, если есть R (a, b) и R (b, с), то R (а, с). Примером подобной корреляции является установленный психологами США факт связи уровня интеллекта с уровнем доходов. Если бы такое исследование проводилось в сегодняшней России, то результаты были бы иными. Очевидно, все дело в структуре общества. Скорость опознания изображения при быстром (тахистоскопическом) предъявлении и словарный запас испытуемых также положительно коррелируют. Скрытой переменной, обусловливающей эту корреляцию, является общий интеллект. 3) Случайная корреляция, не обусловленная никакой переменной. 4) Корреляция, обусловленная неоднородностью выборки. Представим себе, что выборка, которую мы будем обследовать, состоит из двух однородных групп. Haпример, мы хотим выяснить, связана ли принадлежность к определенному полу с уровнем экстраверсии. Считаем, что «измерение» пола трудностей не вызывает, экстраверсию же измеряем с помощью опросника Айзенка ETI-1. У нас 2группы: мужчины-математики и женщины-журналистки. Неудивительно, если мы получим линейную зависимость между полом и уровнем экстраверсии—интроверсии: большинство мужчин будут интровертами, большинство женщин — экстравертами. Корреляционные связи различаются по своему виду. Если повышение уровня одной переменной сопровождается повышением уровня другой, то речь идет о положительной корреляции. Чем выше личностная тревожность, тем больше риск заболеть язвой желудка. Возрастание громкости звука сопровождается ощущением повышения его тона. Если рост уровня одной переменной сопровождается снижением уровня другой, то мы имеем дело с отрицательной корреляцией. По данным Зайон-ца, число детей в семье отрицательно коррелирует с уровнем их интеллекта. Чем боязливей особь, тем меньше у нее шансов занять доминирующее положение в группе. Нулевой называется корреляция при отсутствии связи переменных. В психологии практически нет примеров строго линейных связей (положительных или отрицательных). Большинство связей — нелинейные. Классический притер нелинейной зависимости — закон Иеркса—Додсона: возрастание мотивации первоначально повышает эффективность научения, а затем наступает снижение продуктивности (эффект «перемотивации»). Другим примером является связь между уровнем мотивации достижений и выбором задач различной трудности. Лица, мотивированные надеждой на успех, предпочитают задания среднего диапазона трдности — частота выборов на шкале трудности описывается колоколообразно кривой. Математическую теорию линейных корреляций разработал Пирсон. Ее основания и приложения излагаются в соответствующих учебниках и справочниках по математической статистике. Напомним, что коэффициент линейной корреляции Пирсона rварьируется от -1 до +1. Он вычисляется путем нормирования ковариаци переменных на произведение их среднеквадратических отклонений. Значимость коэффициента корреляции зависит от принятого уровня значимост a и от величины выборки. Чем больше модуль коэффициента корреляции, тем ближе связь переменных к линейной функциональной зависимости.
Рис. 5.17. Примеры распределений испытуемых в пространстве двух признаков а) строгая положительная корреляция, б) сильная положительная корреляция, в) слабая положительная корреляция, г) нулевая корреляция, д) отрицательная корреляция, е) строгая отрицательная корреляция, ж) нелинейная корреляция, з) нелинейная корреляция
Планирование корреляционного
|