Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Шкальные преобразования




Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Возможны два варианта шкальных преобразований:

1) повышение мощности шкалы;

2) понижение мощности шкалы.

Вторая процедура является тривиальной. Поскольку все возможные процедуры преобразований, которые приемлемы для более мощной шкалы (например, шкалы интервалов), допустимы и для менее мощной (например, шкалы порядка), то у нас есть право рассматривать данные, полученные с помощью интервальной шкалы, как порядковые или, допустим, порядковую шкалу — в качестве номинальной. Другое дело, если (по каким-либо соображениям) у нас возникает потребность перейти от шкалы наименований к шкале порядка и т. д. Для этого требуется вводить необъективные (с позиций математической теории измерений) допущения и эмпирические приемы, базирующиеся лишь на интуиции и правдоподобных рассуждениях. Но в большинстве случаев производится эмпирическая проверка: в какой мере данные, полученные с помощью «слабой» шкалы, удовлетворяют требованиям более «мощной» шкалы.

Рассмотрим переход от шкалы наименований к порядковой шкале. Естественно, для этого нужно упорядочить классы по некоторому основанию. Предположим, что принадлежность объекта к некоторому классу есть случайная функция. Тогда переход от номинативной шкалы к шкале порядка возможен в том случае, если существует упорядоченность классов. Во-первых, для каждого элемента существует модальный класс, вероятность принадлежности к которому значимо больше, чем к другим классам. Во-вторых, для каждого элемента существует только одна функция вероятностной принадлежности к множеству классов, такая, чтобы эти классы можно было упорядочить единственным образом. Проще говоря, каждый класс должен иметь только двух соседей: «слева» и «справа», а порядок соседства определяется эмпирической частотой попадания элементов в различные классы. В «свой» класс элемент попадает чаще, в соседние со «своим» — реже и в отдаленные — еще реже. При обработке данных осуществляется эмпирическая проверка каждой тройки классов на стохастическую транзитность. Преобразование шкалы порядка в шкалу интервалов — более частый вариант. Он подробно описан в литературе, посвященной теории психологических измерений, в частности теории тестов.







Дата добавления: 2015-09-07; просмотров: 301. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.016 сек.) русская версия | украинская версия