Шкальные преобразования
Возможны два варианта шкальных преобразований: 1) повышение мощности шкалы; 2) понижение мощности шкалы. Вторая процедура является тривиальной. Поскольку все возможные процедуры преобразований, которые приемлемы для более мощной шкалы (например, шкалы интервалов), допустимы и для менее мощной (например, шкалы порядка), то у нас есть право рассматривать данные, полученные с помощью интервальной шкалы, как порядковые или, допустим, порядковую шкалу — в качестве номинальной. Другое дело, если (по каким-либо соображениям) у нас возникает потребность перейти от шкалы наименований к шкале порядка и т. д. Для этого требуется вводить необъективные (с позиций математической теории измерений) допущения и эмпирические приемы, базирующиеся лишь на интуиции и правдоподобных рассуждениях. Но в большинстве случаев производится эмпирическая проверка: в какой мере данные, полученные с помощью «слабой» шкалы, удовлетворяют требованиям более «мощной» шкалы. Рассмотрим переход от шкалы наименований к порядковой шкале. Естественно, для этого нужно упорядочить классы по некоторому основанию. Предположим, что принадлежность объекта к некоторому классу есть случайная функция. Тогда переход от номинативной шкалы к шкале порядка возможен в том случае, если существует упорядоченность классов. Во-первых, для каждого элемента существует модальный класс, вероятность принадлежности к которому значимо больше, чем к другим классам. Во-вторых, для каждого элемента существует только одна функция вероятностной принадлежности к множеству классов, такая, чтобы эти классы можно было упорядочить единственным образом. Проще говоря, каждый класс должен иметь только двух соседей: «слева» и «справа», а порядок соседства определяется эмпирической частотой попадания элементов в различные классы. В «свой» класс элемент попадает чаще, в соседние со «своим» — реже и в отдаленные — еще реже. При обработке данных осуществляется эмпирическая проверка каждой тройки классов на стохастическую транзитность. Преобразование шкалы порядка в шкалу интервалов — более частый вариант. Он подробно описан в литературе, посвященной теории психологических измерений, в частности теории тестов.
|