Экспериментальная психология 11 страница. Несколько отличается процедура балансировки при контроле известных внешних переменных
Несколько отличается процедура балансировки при контроле известных внешних переменных. Типичный пример учета такой переменной — выявление уровня влияния принадлежности испытуемых к тому или иному полу на результаты эксперимента, поскольку известно, что многие данные, полученные на выборке мужчин, невозможно перенести на женскую выборку. Пол — это дополнительная переменная, поэтому планирование эксперимента сводится к выявлению эффекта действия независимой переменной на зависимую в каждой из двух экспериментальных групп. Аналогично строится эксперимент по сравнению эффекта от различных аппаратурных методик в зависимости от возраста испытуемых и др. В более сложных экспериментах применяется балансировка нескольких переменных одновременно. Примером может служить учет влияния пола экспериментатора на поведение испытуемых при тестировании интеллекта. У нас две группы испытуемых, мужчин и женщин, и два экспериментатора (мужчина и женщина). План эксперимента может выглядеть следующим образом: Группа I (эксперимент) Группа II(контроль) 1. Мужчины — экспериментатор Мужчины — экспериментатор мужчина мужчина 2. Мужчины — экспериментатор Мужчины — экспериментатор женщина женщина 3. Женщины — экспериментатор Женщины — экспериментатор мужчина мужчина 4. Женщины — экспериментатор Женщины — экспериментатор женщина женщина 4. Контрбалансировка. Этот прием контроля дополнительной переменной чаще всего применяют тогда, когда эксперимент включает в себя несколько серий. Испытуемый оказывается в разных условиях последовательно, и предыдущие условия могут изменять эффект воздействия последующих условий. К примеру, при исследовании дифференциальной слуховой чувствительности не безразлично, какой звук, громкий или более тихий, предъявлялся испытуемому первым, а какой — вторым. Также при выполнении тестов на интеллект важен порядок предъявления испытуемому задач: от простой к сложной или от сложной к простой. В первом случае более интеллектуально развитые испытуемые больше утомляются и теряют мотивацию, так как вынуждены решать большее количество задач, чем остальные. При втором варианте предъявления заданий менее интеллектуально развитые испытуемые испытывают стресс неуспеха и вынуждены решать больше задач, чем их более интеллектуальные коллеги. В этих случаях для ликвидации эффектов последовательности и эффекта последствия используют контрбалансировку. Смысл ее состоит в том, что порядок предъявления разных задач, стимулов, воздействий в одной из групп компенсируется иным порядком предъявления заданий в другой группе. Приведем пример плана контроля за внешней переменной для 2 условий (табл. 4.2). Таблица 4.2
Таблица 4.3
Для 3 независимых переменных применяется такой план контрбалансировки, например для предъявления 3-х цветов — красного, желтого, зеленого: (табл. 4.3). Контрбалансировка применяется в тех случаях, когда есть возможность провести несколько серий. Следует лишь учитывать, что большое число попыток может вызвать утомление у испытуемого. Но этот план позволяет контролировать эффект последовательности. Упрощение же плана контрбалансировки приводит к появлению эффекта последовательности. Однако контрбалансировка не позволяет полностью исключить еще один эффект, а именно — влияние изменения порядка предъявления заданий на значение зависимой переменной. Он называется дифференцированным переносом: переход от ситуации 1 (когда она создается первой) к ситуации 2 отличается от перехода от ситуации 2 (когда она идет первой) к ситуации 1. Этот эффект приводит к тому, что реальные различия между двумя разными экспериментальными ситуациями при регистрации преувеличиваются. Итак, техника контрбалансировки заключается в том, что каждый испытуемый получает более чем один вариант воздействия (АВ или ВА) и эффект последовательности целенаправленно распределяется на все экспериментальные условия. При балансировке каждый испытуемый получает лишь одно экспериментальное воздействие — внешняя переменная балансируется за счет выявления эффекта ее действия на членов экспериментальной группы по сравнению с эффектом, полученным при исследовании контрольной группы. Испытуемый может оказаться только в экспериментальной или же только в контрольной группе и получить воздействие какой-нибудь внешней переменной в обеих группах. Балансировка используется при исследовании независимых групп, тогда как контрбалансировка применяется в исследованиях с повторяющимися воздействиями. 5. Рандомизация. О ней мы уже говорили (раздел 4.4). Рандомизацией называется процедура, которая гарантирует равную возможность каждому члену популяции стать участником эксперимента. Каждому представителю выборки присваивается порядковый номер, а выбор испытуемых в экспериментальную и контрольную группы проводится с помощью таблицы «случайных» чисел. Рандомизация является способом, позволяющим исключить влияние индивидуальных особенностей испытуемых на результат эксперимента. Рандомизация применяется в двух случаях: 1) когда известно, как управлять внешними переменными в экспериментальной ситуации, однако у нас нет возможности использовать одну из предшествующих техник контроля; 2) когда мы предполагаем оперировать какой-либо внешней переменной в экспериментальной ситуации, однако не можем ее специфицировать и применить другие техники. Если предположить, что значение дополнительной переменной (переменных) подчиняется вероятностным законам (например, описывается нормальным распределением), то в состав экспериментальной и контрольных групп войдет выборка, которая имеет те же уровни дополнительных переменных, что и генеральная совокупность. По мнению многих специалистов, в том числе Кэмпбелла, уравнивание групп посредством процедуры рандомизации является единственно надежным способом элиминации влияния внешних (дополнительных) переменных на зависимую. Кэмпбелл определяет рандомизацию как универсальный способ уравнивания групп перед экспериментальным воздействием. Другие способы, например метод попарного сравнения, характеризуются им как малонадежные и ведущие к невалидным выводам. И в заключение: обратите особое внимание на таблицу, в которой отображен предложенный МакГиганом алгоритм пошагового контроля влияния внешних переменных на зависимую переменную. Вопросы 1. Зачем применяется контрольная группа? 2. Для чего нужны процедуры балансировки и контрбалансировки? 3. В чем отличие дополнительной переменной от независимой переменной? 4. Какие факторы нарушают внутреннюю валидность эксперимента, а какие — внешнюю? 5. Какие методы отбора и распределения испытуемых по группам применяются при организации эксперимента? 5. Экспериментальные и неэкспериментальные планы Содержание. Планирование эксперимента. Основные экспериментальные планы: планы для одной и двух независимых переменных, факторные планы, планирование по методу латинского и греко-латинского квадратов. Взаимодействие независимых переменных, виды взаимодействия. Планы экспериментов на одном испытуемом. Анализ кривых научения. Планирование по методу временных серий. Контроль асимметричного переносов и плацебо-эффекта. Доэкспериментальные и квазиэкспериментальные планы, в том числе планы временных серий. Эксперимент ex-post-facto. Корреляционное исследование и его планирование. Виды планов корреляционного исследования. Перспективы развития эксперимента: многомерный эксперимент, дифференциально-психологический эксперимент, кросскультурные исследования. Основные понятия. План исследования, план истинного эксперимента, квазиэкспериментальный план, воздействие, источники артефактов, факторный план, воздействие, источники артефактов, факторный план, латинский квадрат, ротационный план, асимметричный перенос, симметричный перенос, план альтернативных воздействий, схемы уравнивания, план ex-post-facto, корреляция, коэффициент корреляции, лонгитюд, естественное развитие. 5.1. Экспериментальные планы 5.1.1 Планы для одной независимой переменной План «истинного» экспериментального исследования отличается от других следующими важнейшими признаками: 1) применением одной из стратегий создания эквивалентных групп, чаще всего — рандомизации; 2) наличием экспериментальной и, как минимум, одной контрольной группы; 3) завершением эксперимента тестированием и сравнением поведения группы, получившей экспериментальное воздействие (X 1), с группой, не получившей воздействия Х0. Классическим вариантом плана является план для 2 независимых групп. В психологии планирование эксперимента начинает применяться с первых десятилетий XXв. Существуют три основные версии этого плана. При их описании будем пользоваться символизацией, предложенной Кэмпбеллом. Таблица 5.1
Здесь R— рандомизация, Х— воздействие, О1 — тестирование первой группы, О2 — тестирование второй группы. 1) План для двух рандомизированных групп с тестированием после воздействия. Его автор — известный биолог и статистик Р. А. Фишер [Fisher R. A., 1935]. Структура плана показана в табл. 5.1. Равенство экспериментальной и контрольной групп является совершенно необходимым условием применения этого плана. Чаще всего для достижения эквивалентности групп применяют процедуру рандомизации (см. гл. 4). Этот план рекомендуют использовать в том случае, когда нет возможности или необходимости проводить предварительное тестирование испытуемых. Если рандомизация проведена качественно, то этот план является наилучшим, позволяет контролировать большинство источников артефактов; кроме того, для него применимы различные варианты дисперсионного анализа. После проведения рандомизации или иной процедуры уравнивания групп осуществляется экспериментальное воздействие. В простейшем варианте используется лишь две градации независимой переменной: есть воздействие, нет воздействия. Если необходимо использовать не 1 уровень воздействия, то применяются планы с несколькими экспериментальными группами (по числу уровней воздействия) и одной контрольной. Если же нужно контролировать влияние одной из дополнительных переменных, то применяют план с 2 контрольными группами и 1-й экспериментальной. Измерение поведения дает материал для сравнения 2 групп. Обработка данных сводится к применению традиционных для математической статистики оценок. Рассмотрим случай, когда измерение проводится интервальной шкалой. Для оценки различия в средних показателях групп используют t -критерий Стьюдента. Оценивание различий в вариации измеряемого параметра между экспериментальной и контрольной группами проводится с помощью критерия F. Соответствующие процедуры подробно рассмотрены в учебниках математической статистики для психологов. Применение плана для 2 рандомизированных групп с тестированием после воздействия позволяет контролировать основные источники внутренней невалидности (как их определяет Кэмпбелл). Поскольку предварительное тестирование отсутствует, исключен эффект взаимодействия процедуры тестирования и содержания экспериментального воздействия и сам эффект тестирования. План позволяет контролировать влияние состава групп, стихийного выбывания, влияние фона и естественного развития, взаимодействие состава группы с другими факторами, позволяет также исключить эффект регрессии за счет рандомизации и сравнения данных экспериментальной и контрольной групп. Однако при проведении большинства педагогических и социально-психологических экспериментов необходимо жестко контролировать исходный уровень зависимой переменной, будь то интеллект, тревожность, знания или статус личности в группе. Рандомизация — лучшая процедура из возможных, но она не дает абсолютной гарантии правильности выбора. Когда существуют сомнения в результатах рандомизации, применяют план с предварительным тестированием. Таблица 5.2
2) План для двух рандомизированных групп с предварительным и итоговым тестированием. Рассмотрим структуру этого плана (табл. 5.2). План с предварительным тестированием пользуется популярностью у психологов. Биологи больше доверяют процедуре рандомизации. Психолог прекрасно знает, что каждый человек своеобразен и отличен от других, и подсознательно стремится уловить эти различия с помощью тестов, не доверяя механической процедуре рандомизации. Однако гипотеза большинства психологических исследований, особенно в области психологии развития («формирующий эксперимент»), содержит прогноз определенного изменения свойства индивида под влиянием внешнего фактора. Поэтому план «тест—воздействие—ретест» с применением рандомизации и контрольной группой очень распространен. При отсутствии процедуры уравнивания групп этот план преобразуется в квазиэкспериментальный (он будет рассмотрен в разделе 5.2). Главный источник артефактов, нарушающий внешнюю валидность процедуры, — взаимодействие тестирования с экспериментальным воздействием. Например, тестирование уровня знаний по определенному предмету перед проведением эксперимента по заучиванию материала может привести к актуализации исходных знаний и к общему повышению продуктивности запоминания. Достигается это за счет актуализации мнемонических способностей и создания установки на запоминание. Однако с помощью этого плана можно контролировать другие внешние переменные. Контролируется фактор «истории» («фона»), так как в промежутке между первым и вторым тестированием обе группы подвергаются одинаковым («фоновым») воздействиям. Вместе с тем Кэмпбелл отмечает необходимость контроля «внутригрупповых событий», а также эффекта неодновременности тестирования в обеих группах. В реальности невозможно добиться, чтобы тест и ретест проводились в них одновременно. План превращается в квазиэкспериментальный, например: R О1 Х О2 R О3 О4 Обычно контроль неодновременности тестирования осуществляют два экспериментатора, проводящие тестирование двух групп одновременно. Оптимальной считается процедура рандомизации порядка тестирования: тестирование членов экспериментальной и контрольной групп производится в случайном порядке. То же самое делается и с предъявлением — не предъявлением экспериментального воздействия. Разумеется, такая процедура требует наличия значительного числа испытуемых в экспериментальной и контрольной выборках (не менее 30-35 человек в каждой). Естественное развитие и эффект тестирования контролируются за счет того, что они одинаково проявляются в экспериментальной и контрольной группах, а эффекты состава групп и регрессии [Кэмпбелл, 1980] контролируются при помощи процедуры рандомизации. Результаты применения плана «тест—воздействие—ретест» представлены в таблице. При обработке данных обычно используются параметрические критерии t и F (для данных в интервальной шкале). Вычисляются три значения t: сравнение 1) О1 и О2; 2) О3 и О4; 3) О2 и О4. Гипотезу о значимом влиянии независимой переменной на зависимую можно принять в том случае, если выполняются два условия: а) различия между О1 и О2 значимы, а между О3 и О4 — незначимы и б) различия между О2 и О4 значимы. Гораздо удобнее сравнивать не абсолютные значения, а величины прироста показателей от первого тестирования ко второму (δ(i)). Вычисляются δ(i12) и δ(i34) и сравниваются по t -критерию Стьюдента. В случае значимости различий принимается экспериментальная гипотеза о влиянии независимой переменной на зависимую (табл. 5.3). Рекомендуется также применять ковариационный анализ по Фишеру. При этом показатели предварительного тестирования берутся в качестве дополнительной переменной, а испытуемые разбиваются на подгруппы в зависимости от показателей предварительного тестирования. Тем самым получается следующая таблица для обработки данных по методу MANOVA (табл. 5.4). Применение плана «тест—воздействие—ретест» позволяет контролировать влияние «побочных» переменных, нарушающих внутреннюю валидность эксперимента. Внешняя валидность связана с возможностью переноса данных на реальную ситуацию. Главным же моментом, отличающим экспериментальную ситуацию от реальной, является введение предварительного тестирования. Как мы уже отметили, план «тест—воздействие—ретест» не позволяет контролировать эффект взаимодействия тестирования и экспериментального воздействия: предварительно тестируемый испытуемый «сенсибилизируется» — становится более чувствительным к воздействию, так как мы измеряем в эксперименте именно ту зависимую переменную, на которую собираемся воздействовать с помощью варьирования независимой переменной. Таблица 5.5
Для контроля внешней валидности используется план Р. Л. Соломона, который был предложен им в 1949 г. 3) План Соломона используется при проведении эксперимента на четырех группах: 1. Эксперимент1: R О1 Х О2 2. Контроль 1: R О3 О4 3. Эксперимент 2: R X О5 4. Контроль 2: R О6 План включает исследование двух экспериментальных и двух контрольных групп и по сути является мультигрупповым (типа 2 х 2), но для удобства изложения он рассматривается в этом разделе. План Соломона представляет собой объединение двух ранее рассмотренных планов: первого, когда не производится предварительное тестирование, и второго — «тест—воздействие—ретест». С помощью «первой части» плана можно контролировать эффект взаимодействия первого тестирования и экспериментального воздействия. Соломон с помощью своего плана выявляет эффект экспериментального воздействия четырьмя разными способами: при сравнении 1) О2 — О1; 2) О2 — О4; 3) О5 — О6 и 4) О5 — О3. Если провести сравнение О6 с О1 и О3, то можно выявить совместное влияние эффектов естественного развития и «истории» (фоновых воздействий) на зависимую переменную. Кэмпбелл, критикуя предложенные Соломоном схемы обработки данных, предлагает не обращать внимания на предварительное тестирование и свести данные к схеме 2 х 2, пригодной для применения дисперсионного анализа (табл. 5.5). Сравнение средних по столбцам позволяет выявлять эффект экспериментального воздействия — влияние независимой переменной на зависимую. Средние по строкам показывают эффект предварительного тестирования. Сравнение средних по ячейкам характеризует взаимодействие эффекта тестирования и экспериментального воздействия, что свидетельствует о мере нарушения внешней валидности. В том случае, когда эффектами предварительного тестирования и взаимодействия можно пренебречь, переходят к сопоставлению О4 и О2 методом ковариационного анализа. В качестве дополнительной переменной берутся данные предварительного тестирования по схеме, приведенной для плана «тест—воздействие—ретест». Наконец, в некоторых случаях необходимо проверить сохранение во времени эффекта воздействия независимой переменной на зависимую: например, выяснить, приводит ли новый метод обучения к долгосрочному запоминанию материала Для этих целей применяют следующий план: 1 Эксперимент 1 R О1 Х О2 2 Контроль 1 R О3 О4 3 Эксперимент 2 R О5 Х О6 4 Контроль 2 R О7 О8 5.1.2 Планы для одной независимой переменной и нескольких групп Иногда сравнения двух групп недостаточно для подтверждения или опровержения экспериментальной гипотезы. Такая проблема возникает в двух случаях: а) при необходимости контроля внешних переменных; б) при необходимости выявления количественных зависимостей между двумя переменными. Для контроля внешних переменных используются различные варианты факторного экспериментального плана. Что касается выявления количественной зависимости между двумя переменными, то необходимость ее установления возникает при проверке «точной» экспериментальной гипотезы. В эксперименте с участием двух групп в лучшем случае можно установить факт причинной связи между независимой и зависимой переменными. Но между двумя точками можно провести бесконечное множество кривых. Для того чтобы убедиться в наличии линейной зависимости между двумя переменными, следует иметь хотя бы три точки, соответствующие трем уровням независимой переменной. Следовательно, экспериментатор должен выделить несколько рандомизированных групп и поставить их в различные экспериментальные условия. Простейшим вариантом является план для трех групп и трех уровней независимой переменной: Эксперимент 1: R Х1 О1 Эксперимент 2: R Х2 О2 Контроль: R О3 Контрольная группа в данном случае — это третья экспериментальная группа, для которой уровень переменной Х = 0. При реализации этого плана каждой группе предъявляется лишь один уровень независимой переменной. Возможно и увеличение числа экспериментальных групп соответственно числу уровней независимой переменной. Для обработки данных, полученных с помощью такого плана, применяются те же статистические методы, что были перечислены выше. Простые «системные экспериментальные планы», как ни удивительно, очень редко используются в современных экспериментальных исследованиях. Может быть, исследователи «стесняются» выдвигать простые гипотезы, помня о «сложности и многомерности» психической реальности? Тяготение к использованию планов с многими независимыми переменными, более того — к проведению многомерных экспериментов, не обязательно способствует лучшему объяснению причин человеческого поведения. Как известно, «умный поражает глубиной идеи, а дурак — размахом строительства». Лучше предпочесть простое объяснение любому сложному, хотя регрессионные уравнения, где все всему равняется, и запутанные корреляционные графы могут произвести впечатление на некоторые диссертационные советы. 5.1.3 Факторные планы Факторные эксперименты применяются тогда, когда необходимо проверить сложные гипотезы о взаимосвязях между переменными. Общий вид подобной гипотезы: «Если А1, А2,..., Аn, то В». Такие гипотезы называются комплексными, комбинированными и др. При этом между независимыми переменными могут быть различные отношения: конъюнкции, дизъюнкции, линейной независимости, аддитивные или мультипликативные и др. Факторные эксперименты являются частным случаем многомерного исследования, в ходе проведения которого пытаются установить отношения между несколькими независимыми и несколькими зависимыми переменными. В факторном эксперименте проверяются одновременно, как правило, два типа гипотез: 1) гипотезы о раздельном влиянии каждой из независимых переменных; 2) гипотезы о взаимодействии переменных, а именно — как присутствие одной из независимых переменных влияет на эффект воздействия на другой. Факторный эксперимент строится по факторному плану. Факторное планирование эксперимента заключается в том, чтобы все уровни независимых переменных сочетались друг с другом. Число экспериментальных групп равно числу сочетаний уровней всех независимых переменных. Сегодня факторные планы наиболее распространены в психологии, поскольку простые зависимости между двумя переменными в ней практически не встречаются. Существует множество вариантов факторных планов, но на практике применяются далеко не все. Чаще всего используются факторные планы для двух независимых переменных и двух уровней типа 2х2. Для составления плана применяется принцип балансировки. План 2х2 используется для выявления эффекта воздействия двух независимых переменных на одну зависимую. Экспериментатор манипулирует возможными сочетаниями переменных и уровней. Данные приведены в простейшей таблице (табл. 5.6). Реже используются четыре независимые рандомизированные группы. Для обработки результатов применяется дисперсионный анализ по Фишеру. Так же редко используются другие версии факторного плана, а именно: 3х2 или 3х3. План 3х2 применяется в тех случаях, когда нужно установить вид зависимости одной зависимой переменной от одной независимой, а одна из независимых переменных представлена дихотомическим параметром. Пример такого плана — эксперимент по выявлению воздействия внешнего наблюдения на успех решения интеллектуальных задач. Первая независимая переменная варьируется просто: есть наблюдатель, нет наблюдателя. Вторая независимая переменная — уровни трудности задачи. В этом случае мы получаем план 3х2 (табл. 5.7). Вариант плана 3х3 применяется в том случае, если обе независимые переменные имеют несколько уровней и есть возможность выявить виды связи зависимой переменной от независимых. Этот план позволяет выявлять влияние подкрепления на успешность выполнения задании разной трудности (табл. 5.8). Таблица 5.6
Таблица 5.7
Таблица 5.8
В общем случае план для двух независимых переменных выглядит как N х М. Применимость таких планов ограничивается только необходимостью набора большого числа рандомизированных групп. Объем экспериментальной работы чрезмерно возрастает с добавлением каждого уровня любой независимой переменной. Планы, используемые для исследования влияния более двух независимых переменных, применяются редко. Для трех переменных они имеют общий вид L х М х N. Чаще всего применяются планы 2х2х2: «три независимые переменные — два уровня». Очевидно, добавление каждой новой переменной увеличивает число групп. Общее их число 2, где п — число переменных в случае двух уровней интенсивности и К — в случае К -уровневой интенсивности (считаем, что число уровней одинаково для всех независимых переменных). Примером этого плана может быть развитие предыдущего. В случае, когда нас интересует успешность выполнения экспериментальной серии заданий, зависящая не только от общей стимуляции, которая производится в форме наказания — удара током, но и от соотношения поощрения и наказания, мы применяем план 3х3х3.
|