Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сложение коллинеарных скользящих векторов





Если скользящие векторы параллельны, то при их сложении главная трудность состоит в определении прямой, на которой будет расположена их сумма. (Величину и направление вектора суммы было бы естественно определить точно так же, как и в случае сложения свободных векторов.) В механике при изучении статики для решения вопроса о сложении параллельных сил, которые, как известно, задаются скользящими векторами, вводится дополнительная гипотеза: к системе векторов можно добавить два вектора, равных по величине, противоположных по направлению и расположенных на одной прямой, пересекающей прямые, на которых расположены данные вектора. Пусть, например, надо сложить скользящие векторы и , расположенные на параллельных прямых. Добавим к ним векторы и , расположенные на одной прямой. Прямые, на которых расположены векторы и , и пересекаются. Поэтому определены векторы

Прямые, на которых расположены векторы и , пересекаются всегда, за исключением случая, когда векторы и равны по величине и противоположны по направлению, в котором говорят, что векторы и образуют пару (векторов).

Таким образом, под суммой векторов и можно понимать сумму векторов и , и эта сумма векторов определена корректно во всех случаях, когда векторы и не образуют пару.

7) Ба́зис (др.-греч. βασις, основа) — множество таких векторов в векторном пространстве, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества - базисных векторов.

Если векторы , , взаимно ортогональны и по модулю равны единице, то они называются ортами прямоугольной декартовой системы координат, а сам базис ортонормированным декартовым базисом. Орты декартовой системы координат обычно обозначают как , , . Согласно определению

(1)

 

Главная особеннность декартовых базисов состоит в том, что координаты любого вектора в этом базисе равны проекциям этого вектора на три взаимно ортогональных направления, определяемых ортами. Эти направления называют координатными осями декартовой системы координат (рис. 9): оси , и . Точка пересечения координатных осей 0 называется началом координат. Тогда

Рис.9 Декартова система координат

 

где проекции вектора определены как

(2)

Если орты декартовой системы координат связаны между собой следующими соотношениями

(3)

то такая система координат называется правой. В заданной декартовой системе координат для каждой точки пространства можно ввести так называемый радиус-вектор - направленный отрезок, начинающийся в начале координат и заканчивающийся в данной точке. Координаты радиус-вектора совпадают с декартовыми координатами соответствующей точки (рис. 10):

(4)


Рис.10. К определению радиус-вектора

 

Модуль радиус-вектора равен расстоянию от начала координат до точки. Отметим следующее. Вектор как направленный отрезок не зависит от системы координат, от выбранного базиса зависят его координаты. Радиус-вектор точки - "привязан" к системе координат и зависит от выбора начала координат. Отметим также, что три орта , , декартовой системы координат и определяемые ими координатные оси полностью эквивалентны. Выражения (1)-(4) аналогичны для каждого орта. Поэтому, для сокращения записи введем следующие обозначения:

(5)

 

Тогда, декартов базис - это тройка векторов

(6)

Координаты вектора запишутся как:

(7)

и т. д. В дальнейшем будет рассматриваться только трехмерное пространство, поэтому, если специально не указано, то индексы будут принимать значения 1, 2, 3. Например, - это какая-то из трех координат радиус-вектора , как принято в (5).

 

В новых обозначениях разложение вектора по декартовому базису запишется как

(8)

а радиус-вектора

(9)

В этих выражениях индексы уже не свободны, это индексы суммирования и от них правая часть не зависит (их можно обозначить как угодно), что видно по левой части, где находится вектор. Это соответствие будет выполняться всегда и поэтому нет необходимости писать знак суммы , а для таких выражений принято правило суммирования Эйнштейна: если выражение с индексами содержит парные индексы, то по ним предполагается суммирование (в 3-х мерном пространстве значения индексов изменяются от 1 до 3). Тогда, разложения вектора (8) и радиус-вектора (9) запишутся в сокращенной форме как

(10)

При использовании этого правила следует следить, чтобы количество свободных индексов в правой и левой частях выражения было одинаковым и не менялось при выполнении каких-либо преобразований. Например, из (1) следует, что . Иногда индекс суммирования может быть свернут арифметическим действием. Так, следует понимать как , так как .

8) Скаля́рное произведе́ние — операция над двумя векторами, результатом которой является скаляр (число), не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними. Данной операции соответствует умножение длины данного вектора x на проекцию другого вектора y на данный вектор x. Эта операция обычно рассматривается как коммутативная и линейная по каждому сомножителю.

Обычно используется одно из следующих обозначений:

,

,

,

или (обозначение Дирака, часто применяемое в квантовой механике для векторов состояния):

.

Обычно предполагается что скалярное произведение положительно определено, то есть

для всех .

Если этого не предполагать, то произведение называется индефинитным.

Скалярным произведением в векторном пространстве над полем называется функция для элементов , принимающая значения в , определенная для каждой пары элементов и удовлетворяющая следующим условиям:

1. для любых трех элементов и пространства и любых чисел справедливо равенство (линейность скалярного произведения по первому аргументу);

2. для любых и справедливо равенство , где черта означает комплексное сопряжение (эрмитова симметричность);

3. для любого имеем , причем только при (положительная определенность скалярного произведения).

Действительное линейное пространство со скалярным произведением называется евклидовым, комплексное — унитарным.


Заметим, что из п.2 определения следует, что действительное. Поэтому п.3 имеет смысл несмотря на комплексные (в общем случае) значения скалярного произведения.

9) Векторное произведение — это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции«векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Произведение не является ни коммутативным, ни ассоциативным (оно являетсяантикоммутативным) и отличается от скалярного произведения векторов. Во многих задачах инженерии и физики нужно иметь возможность строить вектор, перпендикулярный двум имеющимся — векторное произведение предоставляет эту возможность. Векторное произведение полезно для «измерения» перпендикулярности векторов — длина векторного произведения двух векторов равна произведению их длин, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны.

Векторное произведение определено только в трёхмерном и семимерном пространстве. Результат векторного произведения, как и скалярного, зависит от метрикиЕвклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности».

Векторным произведением вектора на вектор в пространстве называется вектор , удовлетворяющий следующим требованиям:

§ длина вектора равна произведению длин векторов и на синус угла ; между ними

§ вектор ортогонален каждому из векторов и

§ вектор направлен так, что тройка векторов является правой.

§ в случае пространства требуется ассоциативность тройки векторов .

Обозначение:

В литературе[1] определение векторного произведения может даваться по-разному. Например, в качестве определения даётся описанное далее выражение векторного произведения в координатах в правой и левойпрямоугольной системе координат. А далее выводится данное выше определение, а также определение правой и левой тройки векторов.

Также для исходного определения может быть взят набор алгебраических свойств векторного произведения, а из них выводиться остальное.

10) Сме́шанное произведе́ние векторов — скалярное произведение вектора на векторное произведение векторов и :

.

Иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее — псевдоскаляр).

Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда, образованного векторами .

§ Смешанное произведение кососимметрично по отношению ко всем своим аргументам:

т. е. перестановка любых двух сомножителей меняет знак произведения. Отсюда следует, что

§ Смешанное произведение в правой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и :

§ Смешанное произведение в левой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и , взятому со знаком "минус":

В частности,

§ Если три вектора линейно зависимы (т. е. компланарны, лежат в одной плоскости), то их смешанное произведение равно нулю.

§ Геометрический смысл — Смешанное произведение по абсолютному значению равно объёму параллелепипеда (см. рисунок), образованного векторами и ; знак зависит от того, является ли эта тройка векторов правой или левой.

 

Три вектора, определяющие параллелепипед.

§ Смешанное произведение удобно записывается с помощью символа (тензора) Леви-Чивита:

(в последней формуле в ортонормированном базисе все индексы можно писать нижними; в этом случае эта формула совершенно прямо повторяет формулу с определителем, правда, при этом автоматически получается множитель (-1) для левых базисов).

11)







Дата добавления: 2015-09-07; просмотров: 663. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия