Разгадка тайны – в полярном графике
Учебник математики для шестого класса
Маленький мальчик, за которым я присматривал, был в шестом классе, и он хотел разобраться в одной конкретной математической задаче. Это была сравнительно простая задача, но я не помнил, как это делается. Чтобы вспомнить и объяснить ему, как она решается, я просмотрел его учебник. Просматривая учебник, я увидел нужную мне геометрию – в учебнике для шестого класса! Автор учебника не понимал того, что видел я, потому что его мысли тогда двигались в совсем другом направлении. Но я увидел в этой математике что-то такое, что искал, и это был ключ, связывающий воедино эти две первоначальные последовательности.
Мне жаль, что я не помню ни названия книги, ни автора – это было давно – но там был показан полярный график и его отношение к спирали Золотого Сечения. Рис.8-21- это карта Южного полюса на полярнoм графике. Обратите внимание на крест, проходящий через центр, одна из линий следует оси х и другая следует оси у. В самом деле, эти линии пересекают каждый круг. Мы демонстрировали это, взяв плоский диск толщиной около половины дюйма, произвольно насыпая на него песок. Мы держали его за рукоятку, находящуюся под ним и ударяли по нему деревянным молоточком. Песок перераспределялся в совершенно квадратный крест, такой, как вы видите на этой иллюстрации. Если бы мы использовали звуковой генератор на диске, тогда песок перестраивался бы во множество других геометрических моделей. Но самой первой моделью, появляющейся при несильном ударе по круглому диску, будет идеальный квадратный крест. Имея круг с квадратным крестом внутри него, возьмём радиус диска за эталон и назовём её единицей: 1 (что очень облегчает расчёты). Вычерчивание концентрических кругов на таком же расстоянии друг от друга наружу от этого первого радиуса даёт вам полярный график.
Спирали на Полярном графике
Вот как обычно выглядит полярный график (Рис.8-22) с 36-тью радиальными линиями, включая сюда и вертикальную, и горизонтальную линии. Эти линии указывают 360° с десятиградусным возрастанием. Затем, нарисованы концентрические окружности, каждая на одинаковом расстоянии от предыдущей таким образом, вдоль каждого радиуса откладывая восемь равных отрезков, считая и внутренний круг как первый. За полярным графиком кроется очень глубокий смысл. Прежде всего подумайте, что он представляет. Это двумерное изображение, где приводится попытка проекцией на плоскую поверхность показать трёхмерную сферу, одну из священных форм. Эта форма – тень. Отбрасываемые тени дают одну из священных возможностей получения информации. К тому же, полярный график составлен из как прямых линий (мужских) так и плавных линий (женских), наложенных друг на друга – мужская и женская энергии единовременно. Представьте, что этот маленький центральный круг есть планета в пространстве космоса. С поверхности планеты автор учебника по математике вычертил спираль Золотого Сечения – не Фибоначчи, но Золотого Сечения. Она начинается в нулевом радиусе на поверхности маленькой «планеты» в середине, и описывает один оборот, от нуля до 360 градусов, или назад к нулю Теперь, чтобы определить значение каждой точки спирали, вы используете средний круг в качестве единицы (поскольку он представляет расстояние от центра к первой окружности, которую мы назвали «планетой»), и затем отсчитываете единицы наружу до того места, где спираль пересекает радиус. Так, на радиусе в 260° (между четвёртым и пятым кругами) вы отсчитали наружу примерно 4,5. (Конечно, на компьютере вы можете сделать это точнее.) На радиальной линии в 210° спираль достигала почти 3,3. Все ли это поняли? Теперь смотрите, что происходит с конкретными значениями от нуля до 360°. При нулевом градусе спираль находится точно на расстоянии одного круга (радиальное возрастание) от центра, поскольку она начинается с поверхности маленькой сферы или планеты. Затем она делает оборот, проходя через различные изменения до тех пор, пока не достигает 120°, где спираль пересекает второй круг. Она продолжает движение наружу к пересечению с четвёртым кругом точно там, где располагается радиальная линия 240°. И восьмого (внешнего) круга она достигает точно у радиуса 360° (или 0°). Радиальные возрастания удваивались (бинарная последовательность 1,2,4,8) точно в 0°,120°,240° и 360°.
Обратите внимание на Рис.8-24, где показаны точки пересечения спирали. Белые звёздочки слева от столбика радиального возрастания показывают, где бинарная последовательность пересекает радиус. Чёрные звёздочки показывают, как спираль развивается по последовательности Фибоначчи (1,2,3,5,8), пересекая радиусы 120°, 190°, 280° и 360°. Обе последовательности одновременно достигают полного круга (360°), хотя и по различной линии возрастания, следуя этой спирали Золотого Сечения. Эта спираль, показанная на Полярном графике, интегрировала последовательности Фибоначчи и бинарную! Я был так возбуждён, что несколько дней ходил колесом. Я знал, что обнаружил нечто действительно необычайное, хотя полностью ещё не понимал, что это такое. (Это одна из моих слабых сторон, в которой мне следует тут признаться. Однажды увидев это, я понял, что раз я расшифровал одну из закономерностей, это должно бы быть справедливо и для другой, но я никогда не возвращался к ней, чтобы хотя бы взглянуть на другую модель, которая, вероятно, так же интересна).
Но я в самом деле проанализировал, как ведёт себя бинарная последовательность. Спираль пересекается на 0°, 120°, 240° и 360°. Как видите, это даёт образование равнобедренного треугольника (Рис.8-25). Если бы эта бинарная спираль продолжала движение наружу, она пересекала бы радиусы в следующих возрастаниях по градусам 16, 32, 64 и так далее, однако всегда касалась бы этих трёх радиальных линий на 120, 240 и 360 градусах, так как они тоже продолжены. Тут есть не только треугольник, но на самом деле вы глядите на трёхмерный тетраэдр, потому что радиусы 120, 240 и 360 градусов продолжаются к центру, образуя как план тетраэдра, так и его вид сбоку.
Новейшая информация: Была обнаружена ещё одна закономерность, которая, как я и подозревал, оказалась последовательностью Фибоначчи. Однако, я ещё не определил, какова значимость этого открытия для сознания.
Треугольники Кита Кричлоу (Keith Critchlow) и их музыкальное выражение
Ещё одна фигура этого чертежа представляет собой равнобедренный треугольник с горизонтальной линией, проходящей прямо через середину от 0° к 180°. Это боковой вид тетраэдра. Вы могли бы не придать этому значения, и я, наверное, никогда бы не догадался, но другой человек, Кит Кричлоу, это сделал. Нам неизвестно, что он думал и как он к этому пришёл. Когда он это сделал, он не знал того, что сейчас знаете вы. (Он мог узнать это теперь, после того, как он увидел эту работу, но когда он писал свою книгу, он этого не знал.)
Рис.8-26 – это труд Кричлоу. Он начертил равносторонний треугольник с линией, проходящей через середину; затем он отмерил середину центральной линии (см. чёрную точку) и прочертил линию вниз к углу и вверх до края к верхней стороне, а затем вертикально вниз к центральной линии, как показано на рисунке. Кто знает, почему? Затем там, где эта первая диагональная линия пересекла центральную линию, он провёл вертикальную линию к верхнему краю, и опять провёл линию вниз к тому же нижнему углу. Воспользовавшись точкой пересечения этой диагонали с центральной линией, он снова провёл вертикальную линию к верхнему краю, и опять опустил линию вниз в нижний угол. Пользуясь точкой пересечения с центральной линией, он повторил всё, что делал прежде, а затем проделал то же самое налево. От первой линии можно продолжать двигаться так в обоих направлениях. Начертив эту забавную маленькую фигуру, он совершил очень важное открытие. Он говорит: «Следуя этой схеме в данной строительной модели, каждая последующая пропорция становится гармоническим соотношением между предыдущей пропорцией и общей длиной, и все эти пропорции будут нести в себе музыкальное значение: одна вторая даёт октаву, две трети – квинту, четыре пятых -главную терцию, восемь девятых – основной тон (секунду) и шестнадцать семнадцатых – полушаг (полутон).» Иными словами, он сравнивает измерения этих линий с музыкальными тонами. Затем он попробовал измерять иначе, начав с другой точки центральной линии (Рис.8-27), отметив три четверти (см. чёрную точку), и обнаружил, что расстояния составили 1/7, 1/4, 2/5, 4/7, 8/11 и 6/19 – и все это числа имеют музыкальное соответствие. Это очень, очень интересно. Это значит, что музыкальные гармонии каким-то образом связаны с пропорциями этой центральной линии, проходящей через тетраэдр. Но Кричлоу начинал с измерения, и если вам всё ещё необходимо применять линейку, то значит, вы ещё не добралось до самых основ священной геометрии; чего-то не хватает. Если вы уже добрались до священной геометрии, тогда вам для измерения ничем никогда пользоваться не приходится. Измерительный аппарат уже встроен так, что возможно рассчитать всё, что угодно, не производя никаких вычислений и не пользуясь линейкой или чем бы то ни было. Это всегда уже встроено прямо в саму систему. Я экспериментировал с его чертежами и обнаружил, что если я наложу эту модель на полярный график, то я смогу воспроизвести его первую модель, которая показывала октаву – отметку половины линии – безо всякого измерения (Рис.8-28).
Всё, что мне нужно было сделать, это – провести линию, которая там уже была, от нижней вершины треугольника через центр сферы к противоположной стороне треугольника; когда я опустил линию прямо вниз, она разделила центральную линию точно пополам, что и было точкой октавы, обнаруженной Кричлоу. Затем можно было автоматически провести остальные три линии. Потом я обнаружил, что самый внешний круг полярного графика, описывающий равносторонний треугольник, тоже находился в гармонии относительно центральной линии: вертикальная линия вниз от 60 градусов точно перекрывает линию В. Тут есть соответствие между мужскими (прямолинейными) и женскими (криволинейными) составляющими внутри и снаружи этого треугольника, и эти пропорции все имели музыкальное соответствие. И при этом мне ничего не нужно было измерять! Теперь мы вынесли это на расстояние световых лет от вышесказанного. Группа исследователей обнаружила, что эти линии можно вырисовывать не только из центра, но с любой узловой точки внутри верхней половины треугольника, и в результате у вас получатся все известные в сущем гармонии. Иными словами, если вы проведёте линию из любой точки пересечения прямых и кривых линий, от 0° до 120°, опустите её вниз к вершине первоначального треугольника и начнёте вычерчивать линии следуя этой закономерности, то вы получите все гармонические системы – не только западную клавиатуру, но и восточную: в действительности, все известные гармонические системы и множество неизвестных, которые никогда ещё не использовались. Люди, проводившие это исследование, теперь уверены, что теперь, когда определена вся система гармоний, из музыкальных гармоний могут быть выведены все законы физики. Лично я уверен, что гармонии музыки и законы физики взаимосвязаны и сейчас мы верим, что доказали это математически и геометрически, хотя тут это полностью не показано. Я был очень возбуждён, когда собирал эту информацию, потому что следствия получались невероятные. Это значит, что гармонии музыки находятся внутри тетраэдра, и эти гармонии поддаются определению. С тех пор мы обнаружили ещё одну геометрическую модель за той, которая показана на этой иллюстрации. Эта закономерность выявляет все ключи и открывает сокровенный смысл предназначения Египта. Египтяне свели всю свою философию к квадратным корням 2, 3, 5 и треугольнику 3-4-5. Многие люди давали этому объяснение, но за геометрией тетраэдра сокрыто иное объяснение. Эта идея, вероятно, прошла мимо нас, включая некоторым образом и меня. Но она – тут, и теперь мы над этим работаем.
Спирали чёрного и белого цвета
Когда я трудился над музыкальными гармониями, я получил по почте открытку. На этой открытке был изображён полярный график с отражающими поверхностями (Рис.8-29). Каждый компонент имел маленькую отражающую поверхность. Я хочу, чтобы вы увидели, как свет отражается от полярного графика. Он отражает то, что выглядит как спираль Фибоначчи или спираль Золотого Сечения. На фотографии видны два рукава спирали, расположенные один против другого точно под углом 180°. Обратите внимание, что между отражёнными рукавами свет становится очень тёмным. Чёрно-светные спирали поворачиваются на 180° друг относительно друга и на 90° к белому свету (Мы встречали это раньше во вращающейся галактике.) Если вы посмотрите в самую середину, то можете увидеть, что два противоположных рукава расположены друг относительно друга точно на 180°.
Вот, где мы видели это раньше (Рис. 8-30). На рисунке видно, как в одном направлении выходит спираль белого света, и на 180° от неё выходит другая бело-световая спираль в другом направлении. Тёмные рукава – женские – выходят между светлыми. Это объясняет, почему чёрный свет между светлыми рукавами спирали отличен от черноты остального пространства космоса (см. Рис.2-35), как обнаружили учёные. Дело в том, что чёрный свет внутри спирали есть женская энергия, а темнота наружного пространства космоса является Пустотой, что не есть то же самое. Учёные не могли никак понять, почему они различны.
Карты для левого полушария мозга и их эмоциональная составляющая
Есть ещё одно простое учение, которое мне хотелось бы представить здесь. Вычерчивание тетраэдра на полярном графике геометрически представляет музыкальные гармонии. Этот чертёж и информация, которую я дал вам по этому предмету, достигает вашего понимания через левое полушарие мозга. Но помните, как мы проходили через визуализации, где я сказал, что каждая строка на странице вовсе не есть строка на странице, но карта движения духа через Пустоту? Итак, эти чертежи представляют собой карты – для левого полушария мозга. Но есть ещё и другая составляющая, которая так же важна: кроме того, что они являются картой движения Духа в Пустоте, линии на любом рисунке священной геометрии представляют нечто ещё. Для каждой линии в священной геометрии всегда существует соответствующий эмоциональный и эмпирический аспект. Там дана не только ментальная составляющая, но и эмоциональная составляющая, которую можно познать эмпирически. Рисунок священной геометрии может войти в сознание человека через левое полушарие, но есть ещё способ, каким он может достичь сознания через ощущение, через правое полушарие. Иногда эта эмоциональная/эмпирическая составляющая не очевидна. Что это означает? Давайте возьмём для примера музыку. Музыка может проникать в чувства человека как звук, и её можно слышать и чувствовать внутри себя, или же – её можно воспринимать левым полушарием мозга в виде пропорций и математических выкладок. При изучении священной геометрии помните, что обе стороны мозга используют одну и ту же информацию различным образом. (Тут Друнвало сыграл на флейте племени Сиу Лакота, чтобы дать ученикам возможность прямого восприятия ощущения. Он попросил их закрыть глаза и вместо того, чтобы изучать или думать о музыке, просто её почувствовать). Форма и священная геометрия, с этим связанная, является источником, но пути восприятия этой информации различны. Обычно намного проще воспринять информацию через ощущение, через правое полушарие мозга, чем через логическое левое полушарие, но они равноценны. Трудно увидеть их равноценность, но это так. Во всей этой геометрии, если вы посмотрите на все эти треугольники и квадраты вокруг тела и взаимосвязанные сферы и формы, некие ощущения связаны с каждой геометрией. Быть может, вы не знаете, каково именно это ощущение. На то, чтобы разобраться, что с чем связано, может уйти вся жизнь, но я уверен, что с каждой священной геометрической формой всегда связан эмпирический аспект.
Назад к Плоду Жизни через вторую информационную систему
Теперь я намереваюсь провести под всем этим своего рода черту. Помните, мы наложили этот треугольник на полярный график, и его вершины коснулись 0, 120 и 240 градусов, затем мы добавили эти линии (см. Рис.8-28). Но в природе, как и в галактике, не одна, а две спирали выходят из центра в противоположных направлениях (см. Рис.8-29 и 8-30). Итак, если вы будете следовать природе, вам понадобится проложить две спирали, которые создадут на полярном графике два противоположных треугольника (Рис.8-31). Если вы посмотрите внимательно, то на самом деле получилось два тетраэдра – точнее говоря, это звёздный тетраэдр, вписанный в сферу.
Если вы видели труд Ричарда Хогленда, помните ли вы, каково было послание на Марсе в Кидонии? Это был звёздный тетраэдр внутри сферы. Если вы не видели работы Ричарда Хогленда, я предлагаю вам посмотреть на то, что он показал Обединённым Нациям. Хотя наука только-только начинает понимать, что это такое, то, что показал им Мистер Хогленд, должно для вас значить очень много. Внутри звёздного тетраэдра в сфере есть ещё один звёздный тетраэдр (Рис.8-32). И внутрь меньшего тетраэдра идеально помещается сфера. Если взять сферу этого размера и поместить её на каждую из вершин тетраэдров, то в результате образуется Плод Жизни. Если я поверну это изображение на 30° и избавлюсь от некоторых линий, то вы сможете увидеть результат яснее (Рис.8-33). То, что вы только что увидели, только в перевёрнутом виде, была вторая информационная система Плода Жизни. Вся описанная выше информация – звёздный тетраэдр, спирали Золотой Середины, свет, звук, музыкальные гармонии и так далее, произошла из этой второй информационной системы. Я мог начать с Плода Жизни и возвращаться другим путём, но со мной произошло не так. Я хотел показать вам, что доступ ко второй информационной системе лежит через соединение концентрических кругов Плода Жизни с радиальными линиями, выходящими из центра, а не соединением всех центров между собой, как мы делали для нахождения Платоновых тел и информации о кристаллах. Это просто иной способ наложения мужских линий на женские линии Плода Жизни. В первой информационной системе – Кубе Метатрона – мы дошли до структурных моделей вселенной, основанных на пяти Платоновых телах. Они проявляются в структурных решётках металлов и кристаллов и во многих других моделях в природе, о которых мы не говорили. Диатомовые водоросли, входящие в состав диатомовой почвы, были одной из первых жизнеформ в мире, и диатомы есть ничто иное, как маленькие геометрические формы или функции моделей. Вам только что было показано, как свет, звук и музыкальные гармонии взаимосвязаны через поле звёздного тетраэдра, вписанного в сферу, которая вышла напрямую из Плода Жизни, модели третьего поворота Бытия (Рис.8-34).
|