Введение 5 страница. Апатиты. Месторождения апатитов связаны с изверженными и метаморфическими породами и образуются в результате эндогенных процессов
Крупными считаются месторождения с разведанными запасами (млн т) фосфатного сырья (их более 200), средними – от 50 до 200 и мелкими –менее 50. Апатиты. Месторождения апатитов связаны с изверженными и метаморфическими породами и образуются в результате эндогенных процессов. В апатитовых рудах фосфат обычно четко раскристаллизован, его индивиды гораздо крупнее, обособлены от фосфатных минералов. Среди промышленных руд апатита выделяют собственно апатитовые руды, в которых апатит является главным промышленным минералом, и комплексные апатитсодержащие руды, в которых апатит извлекают попутно с другими компонентами. Типизация апатитовых руд представлена в табл. 5. Апатитоносные провинции. В настоящее время на различных континентах Земли установлено 18 апатитоносных провинций, в пределах которых обнаружено более 100 месторождений апатитовых руд. В СНГ выделено 10 апатитоносных провинций: Карело-Кольская, Украинская, Шорско-Кузнецкая, Восточно-Саянская, Енисейско-Чадобецкая, Байкальская, Маймеча-Котуйская, Уджинская, Алданская и Джугджуро-Становая. По запасам минерального фосфатного сырья крупнейшей из них является Карело-Кольская.
Таблица 4 Ресурсы и запасы фосфатных руд (млн т)
Таблица 5 Типы апатитовых руд [8]
Фосфориты. Они являются продуктом литогенеза морских осадков, образовавшихся химическим, биологическим и механическим путем. Подчиненную роль играют остаточные и инфильтрационные образования в корах выветривания. Основные разновидности фосфоритов. По составу минеральных компонентов, насыщенности фосфоритами и структурно-текстурным особенностям выделяют следующие основные разновидности фосфоритов: желваковые, зернисто-ракушечниковые, массивные и др. Желваковые фосфориты представляют собой скопления округлых, овальных и неправильных конкреций, состоящих из различных нефосфатных минералов, сцементированных аморфным или кристаллическим фосфатным веществом. Размеры конкреций варьируют от долей миллиметра до 10–15 см. Залегают они в песках, глинах, мелу, конгломератах и других породах. Конкреции иногда сливаются в сплошную массу – фосфоритовую плиту. Содержание Р2О5 в исходной руде 8–14 %. Зернисто-ракушечниковые фосфориты состоят из мелких отложений (оолитов) и галек фосфатов или из фосфоризированных раковин и их обломков, содержащихся в песках и песчаниках. Фосфориты этой разновидности легко обогащаются, и при содержании Р2О5 более 5 % в руде они являются промышленными. Массивные фосфориты представляют собой однородные осадочные породы темно-серого, бурого и черного цвета. Под микроскопом устанавливается, что фосфориты этой разновидности состоят из мельчайших оолитов или кристаллических зерен фосфатного вещества, сцементированных кремнисто-фосфатным веществом. Они характеризуются высоким содержанием Р2О5, достигающим 26–28 % и более. Классификация фосфоритовых месторождений. Различают платформенные и геосинклинальные месторождения. Для платформенных месторождений характерно: 1) широкое площадное распространение фосфоритоносных отложений; 2) небольшая мощность фосфоритовых пластов (несколько метров); 3) присутствие в разрезе фосфоритоносной толщи обычно одного-двух фосфоритовых пластов; 4) определенный состав вмещающих отложений – пески, глины, мергели, мел и опоки; 5) горизонтальное или слабонаклонное залегание фосфоритовых пластов. Месторождения геосинклинального типа сложены чередующимися пластами кремнистых пород, известняков и доломитов, а также фосфоритов. Мощность фосфоритоносных толщ достигает 50–75 м. В них выделяется обычно до 7–10 фосфоритовых пластов, причем отдельные из них имеют мощность до 10–14 м. Фосфоритоносные толщи отличаются сложными условиями залегания: смяты в складки, разбиты разломами, сдвигами, иногда прорваны интрузиями, на контакте с которыми фосфориты бывают метаморфизованными до кристаллических апатитов. Закономерности распределения фосфоритов. В геологической истории развития Земли существовали эпохи значительного фосфоритообразования. А. Л. Яншин и М. А. Жарков выделили три глобальные эпохи фосфоритообразования – венд-раннекембрийскую, мел-палеогеновую Геология месторождений фосфоритов. В СНГ наиболее крупные месторождения фосфоритов находятся в Казахстане в Каратауском бассейне. Он расположен в Джамбульской и Чимкентской областях и приурочен к северо-восточным отрогам хребта Малый Каратау, вытянут в северо-западном направлении на 120 км при ширине 20–25 км. В сроении бассейна принимают участие палеозойские и кайнозойские осадочные образования, залегающие на мощной докембрийской толще (метаморфические кварц-хлоритовые и тальк-хлорит-серицитовые сланцы, песчаники и др.). Протерозойские образования трансгрессивно с угловым несогласием перекрыты нижнепалеозойскими (нижний кембрий-средний ордовик) отложениями, в составе которых выделяются продуктивная кремнисто-карбонатная чулуктауская свита мощностью 50–100 м и перекрывающая ее карбонатная шабактинская свита. Чулуктауская свита подразделяется на четыре горизонта: нижних доломитов, кремневый, продуктивный и железистых доломитов (или железомарганцевый). Продуктивный горизонт в свою очередь расчленяется на три пачки – нижнюю фосфоритную (кондиционные фосфоритовые руды), среднюю фосфатно-сланцевую (фосфатные глинисто-кремнистые сланцы) и верхнюю фосфоритную. Породы смяты в складки, имеют, как правило, моноклинальное залегание, местами поставлены вертикально, нарушены многочисленными продольными, поперечными и диагональными разломами. В Каратауском бассейне известно несколько десятков месторождений микрозернистых фосфоритов. Наиболее крупными из них являются Чулактау, Аксай, Коксу, Джанатас и Кокджон. Число продуктивных пластов обычно один-два, а на месторождении Коксу – три. Средняя их мощность 3–17 м, содержание Р2О5 23–27 %. Месторождения фосфоритов Беларуси. В Могилевской области разведаны два месторождения – Мстиславльское и Лобковичское. Стратиграфически фосфориты связаны с отложениями сеноманского яруса верхнего отдела меловой системы. На Мстиславльском месторождении мощность продуктивной пачки варьирует от 0,1 до 4,1 м (чаще 1,1–1,8 м). Содержание Р2О5 по подсчетным блокам составляет 6,0–7,6 %. Запасы фосфоритовых руд по категориям С1+С2 оцениваются в 175 млн т. Средняя мощность вскрышных пород в пределах различных блоков изменяется от 27,9 до 36,2 м. Лобковичское месторождение расположено в 10 км севернее г. Кричева. Полезное ископаемое залегает на глубине 20,6–79,0 м. Мощность продуктивной пачки в среднем 0,75–0,98 м. Содержание Р2О5 в руде колеблется от 2,5 до 14,5 % (в основном 4,9–6,3 %). Запасы фосфоритовых руд по категориям С1+С2 составляют 245 млн т. В конце 1990-х гг. выявлены два относительно небольших месторождения фосфоритов в Брестской области – Ореховское и Пограничное. Продуктивны палеогеновые отложения (желваковые фосфориты) и кора выветривания верхнемеловых образований (глинистые фосфориты). Лекция 9. СЕРА Геохимия и минералогия. Сера – неметаллический элемент с характерным ярко-желтым цветом. В природе она находится как в свободном состоянии, так и в виде неорганических и органических соединений, являясь 13-м элементом по распространенности. Среднее содержание ее в земной коре составляет 5 . 10-2 %, а в морской воде – 0,08–0,09 %. Сера распространена преимущественно в виде соединений, представленных сульфидами (пирит, марказит, халькопирит, сфалерит, галенит и др.), сульфатами (гипс, ангидрит, лангбейнит, полигалит и др.), присутствует в естественных газах (Н2S, SO2), нефтяных водах и водах некоторых минеральных источников, в сырой нефти и природном газе, входит в состав белков и содержится в организмах животных и в растениях. Самородная сера бывает коллоидной (аморфной) и кристаллической. Известно шесть полиморфных модификаций ее, из которых только одна (альфа-сера), кристаллизующаяся в ромбической сингонии, устойчива в природных условиях. В составе серы преобладают изотопы 32S и 34S, отношение между которыми меняется от 21,61 до 22,60 и косвенно указывает на эндогенное или экзогенное ее происхождение. Самородная сера встречается в виде зернистых или массивных скоплений. Твердость ее 1,5–2,5, плотность – 1,9–2,1 г/см3. Она плавится при температуре 110 о С, при температуре 248 о С воспламеняется и горит голубым пламенем с образованием SO2. Изоморфными примесями в ее составе являются селен, мышьяк, теллур, реже таллий. Основные механические примеси – карбонаты, глинистое вещество, ангидрит, гипс, твердые углеводороды. Сера нерастворима в воде и почти во всех кислотах, но легко растворяется в сероуглероде (CS3), в нефти, керосине и анилине. Применение в промышленности. Основным потребителем серы (около 80 %) является химическая промышленность, в которой наибольшее количество ее идет для получения серной кислоты, используемой для производства фосфорных удобрений. Для выработки 1 т суперфосфата необходимо около 400 кг серной кислоты. В химической промышленности серная кислота применяется для получения других кислот (фосфорной, соляной и др.), пластмасс, красителей и др. В нефтяной промышленности она используется для очистки нефтепродуктов, в металлургии – для травления металлов. В элементарном виде она находит применение в резиновой, бумажной, текстильной, пищевой промышленности. Используется также для производства инсектицидов, стекла, взрывчатых веществ. До начала ХХ в. мировое потребление серы покрывалось в основном за счет месторождений на о. Сицилия. В течение 100 лет Италия была монополистом на мировом рынке серы. В 1904 г. США начали разрабатывать месторождения серы на побережье Мексиканского залива. При общем мировом уровне получения серы приблизительно 50–55 млн т более 40 % приходится на переработку нефти и природного газа и около 25 % – на разработку месторождений самородной серы. Серу также получают в процессе улавливания из газовых выбросов коксохимического производства и цветной металлургии, при переработке пирита, пирротина и других сульфидов и сульфатов. Тем не менее месторождения самородной серы и ныне остаются одним из ведущих источников ее получения. Типы руд самородной серы. Рудами считаются сероносные породы с содержанием серы не менее 5–8 %. По литологическому составу среди Общетехнические требования и способы добычи. Общетехнические требования к рудам самородной серы в значительной мере различаются в зависимости от способа добычи и технологии обогащения руд. Добыча серных руд осуществляется открытым или подземным способами, а также путем выплавки серы непосредственно в недрах по способу Фраша. Минимальная рабочая мощность пласта серных руд обычно составляет 0,5–1,0 м. При разработке открытым способом коэффициент вскрыши иногда достигает 20/1–40/1. При разработке месторождений серы горными выработками обычно учитывают содержание серы в горной массе, степень ее дисперсности, состав вмещающих пород, наличие вредных примесей (селен, мышьяк, битумы и др.). По содержанию серы различают руды: богатые (более 25 %), средние (10–25 %) и бедные (5–10 %). Одним из наиболее прогрессивных является метод подземного расплавления серы, впервые примененный при разработке месторождений в районе Мексиканского залива в США. Сущность этого метода заключается в нагнетании в сероносные породы через скважины сильно перегретой воды, водяного пара (температура до 163 о С) и сжатого воздуха, расплавлении серы и откачке ее на поверхность. В СНГ метод Фраша применяется при разработке руд самородной серы на Ново-Яворском месторождении во Львовской области Украины. Эксплуатационные скважины расположены по квадратной сетке 50 х 50 м. Глубина скважин около 200 м. Генетические типы промышленных месторождений. Существуют две группы промышленных месторождений самородной серы – эндогенная и экзогенная. Месторождения первой группы развиты в областях молодой и современной вулканической деятельности и связаны с вулканогенными и вулканогенно-осадочными породами; месторождения второй группы приурочены к толщам осадочных пород (преимущественно эвапоритовые формации). Эндогенная группа месторождений. С месторождениями этой группы связано не более 5–10 % запасов серы. В состав группы входят: 1) гидротермальные, 2) эксгаляционные, 3) вулканогенно-осадочные, 4) месторождения-потоки серы. Гидротермальные месторождения образуются в результате деятельности горячих сернокислых вод, вызывающих интенсивную переработку вулканогенных пород (преимущественно андезитов), их туфов, туффитов и туфобрекчий. Сера выделяется как при химическом взаимодействии сернокислых растворов с силикатами, так и при неполном окислении сероводорода и при реакциях между сероводородом и сернистым газом. Рудные тела сложены сернистыми кварцитами, опалитами, алунитами. Залежи имеют пластообразную, линзовидную и штокверковую форму. Мощность их от 1–2 до 20–25 м. Содержание серы в рудах достигает 30–40 %. Эксгаляционные месторождения возникают за счет газовых выделений и отложения серы в кратерах вулканов, в полостях, трещинах и т. д. Залежи этого типа невелики по размерам, но содержат руды высокого качества. Вулканогенно-осадочные месторождения формируются в кратерных озерах, на дне которых по трещинам выходили горячие источники с сероводородом и сернистым газом. Выделявшаяся при этом элементарная сера оседала на дне озера в смеси с пепловыми и иловыми частицами. Залежи серных руд имеют форму плоских линз с размерами в поперечнике до нескольких сотен метров и мощностью до 25 м. Месторождения-потоки серы возникают в результате излияния расплавленной серы через жерло и боковые трещины вулканов. Расплавленная сера заполняет небольшие трещины, полости и застывает. Залежи имеют неправильную и языкообразную форму. Образование их связано с переплавлением серы из серных руд других генетических типов. Экзогенная группа месторождений. На месторождения этой группы приходится более 90 % разведанных в мире запасов серы. Среди них выделяют два типа – стратиформный и солянокупольный. Стратиформный тип месторождений серы является основным в мире. Месторождения этого типа генетически и пространственно связаны с эвапоритовыми толщами (формациями). Известно шесть таких сероносных формаций: 1) верхнеказанская (Р2к) (месторождения Среднего Поволжья: Водинское, Алексеевское, Сюкеевское и др.); 2) очоанская (Р2) (месторождения Делаверского бассейна в США: Дувал, Калберсон и др.); 3) верхнеюрская (J3) (месторождение Гаурдак в Туркмении); 4) тортонская (N1t) (месторождения Предкарпатского бассейна: Тарнобжег, Гржибов, Езерко, Сташув в Польше, Немировское, Язовское, Любеньское, Подорожненское, Раздольское на Украине); 5) мессинская (N1) (месторождение на о. Сицилия); 6) нижнефарская (N1) (месторождение Мишрак в Ираке). Солянокупольный тип месторождений – второй после стратиформного по промышленной значимости. Месторождения этого типа широко распространены в районе Мексиканского залива (США и Мексика). Сероносные залежи приурочены к кепракам соляных куполов, обнаруживая при этом тесную связь с углеводородами. Основные закономерности распространения. Месторождения серы крайне неравномерно размещены на Земле. Это побудило А. С. Соколова еще в 1949 г. выделить шесть сероносных провинций: 1) Андийскую (западное побережье Южной Америки); 2) Восточноазиатскую (Камчатка, Курильские, Японские и Филиппинские острова, Индонезия); 3) Техас-Луизианскую, или побережье Мексиканского залива (США, Мексика); 4) Средиземноморскую (о. Сицилия, юг Франции, Испания, Предкарпатье); 5) Среднеазиатскую (Киргизия, Таджикистан, Узбекистан, Туркмения, Кавказ, Аравийский полуостров, Южная и Юго-Восточная Азия); 6) Восточноевропейскую (Среднее Поволжье, Республика Коми, Урало-Эмбинский район, Приуралье). Общим для размещения на Земле эндогенных и экзогенных месторождений серы является то, что они не характерны для областей, переживающих современную стадию покоя или консолидации с эпейрогеническими движениями блоков, а также для древних геосинклинальных поясов – шовных зон, закрывшихся в разное время океанических бассейнов. Промышленных залежей серы нет на щитах, они редки и обычно невелики по масштабам в глубине плит платформ, в поясах доальпийской складчатости, особенно байкальской, каледонской и герцинской. На Земле наблюдается стратиграфическая приуроченность большинства промышленных экзогенных месторождений самородной серы к отложениям перми, юры и неогена. Эндогенные месторождения ее формировались в основном в кайнозое. Ресурсы и запасы. Мировые запасы полезного компонента в месторождениях самородной серы оцениваются в 1,7–1,8 млрд т. Основные запасы ее сосредоточены в США, Мексике, России, Ираке, Италии. Более 50 месторождений самородной серы с разведанными запасами (млн т) считаются весьма крупными, 10–50 – крупными, 1–10 – средними, менее 1 – мелкими. В связи с тем что в настоящее время основным источником получения серы являются углеводороды, отметим страны, обладающие наиболее крупными запасами этого вида минерального сырья. Странами-лидерами по подтвержденным запасам нефти и газоконденсата (млрд т) являются: Саудовская Аравия – 35,86 (23,1 % от мировых запасов), Россия – 21,25 (13,7 %), Ирак – 15,34 (9,9 %), Кувейт – 12,97 (8,4 %) и Иран – 12,40 (8,0 %). По подтвержденным запасам природного газа (трлн м3) лидируют следующие страны: Россия – 47,38 (33,9 %), Иран – 21,00 (15,07 %), Катар – 7,08 (5,08 %), ОАЭ – 5,80 (4,16 %), Саудовская Аравия – 5,36 (3,84 %) и США – 4,68 (3,36 %). Геология месторождений самородной серы. Основное практическое значение имеет стратиформный тип месторождения, характерным представителем которого является месторождение Мишрак. Месторождение Мишрак – одно из наиболее крупных в мире (запасы элементарной серы более 100 млн т). Оно расположено примерно в 300 км к северу от Багдада на левом берегу р. Тигр. В тектоническом отношении приурочено к складчатым образованиям Месопотамской депрессии – зоне шириной около 200 км, выполненной осадочными породами миоцена. Собственно месторождение контролируется Мишракской антиклиналью, вытянутой в северо-западном направлении на 11 км при ширине ее 3,5 км. В северо-западной части этой антиклинали имеются промышленные скопления природного газа. Сероносными являются породы формации нижний фарс (средний миоцен, тортон), залегающие с несогласием на биогенных битуминозных евфратских известняках. В составе продуктивной толщи выделяются три рудные зоны, характеризующиеся преобладанием вторичного перекристаллизованного кальцита и самородной серы с битумом над первичными гипс-ангидритовыми породами. Мощность каждой из рудных зон около 30 м. Площадь контура промышленной минерализации составляет 10 км2. Среднее содержание серы в рудах 23,14 %. По текстурным особенностям руды весьма разнообразны – полосчатые, гнездовидные, рассеяно-вкрапленные, псевдобрекчиевые, прожилковые и рассеяно-прожилковые. Серные руды месторождения отличаются повышенной битуминозностью (до 10 %); другие примеси практически отсутствуют. Образование Мишракского месторождения было обусловлено благоприятным сочетанием ряда факторов – наличием мощных сульфатных толщ, крупных скоплений УВ, благоприятных структурно-тектонических и гидродинамических условий. В результате взаимодействия углеводородов с сульфатными породами при участии сульфатредуцирующих бактерий произошло образование сероводорода и вторичного кальцита по реакции: CaSO4 + CH4 + (бактерии анаэробные) среда восстановительная Н2S + + CaCO3 + H2O. Образовавшийся сероводород, благодаря инфильтрации богатых кислородом поверхностных вод р. Тигр, окислялся и переходил в элементарную серу: 2H2S + O2 окислительная среда 2S + 2H2O. Руды месторождения разрабатываются методом Фраша. Ежегодная добыча составляет около 600 тыс. т элементарной серы. Лекция 10. БОР Геохимия и минералогия. Как химический элемент бор впервые был получен Ж. Гей-Люссаком в 1808 г. при нагревании борной кислоты с металлическим калием. Кларк бора (по А. П. Виноградову) в земной коре составляет 1,2 . 10-3 %. Повышенные концентрации его наблюдаются в глинах и в глинистых сланцах (1,1 . 10-2 %), фосфоритах (1,3 . 10-2 %), железо-марганцевых конкрециях (1,1 . 10-2 %), а также в подземных водах вулканически активных районов и в нефтяных водах. Известны два стабильных изотопа бора 11 B и 10 B с соотношением примерно 4,2: 1.
|