Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Введение 5 страница. Апатиты. Месторождения апатитов связаны с изверженными и метаморфическими породами и образуются в результате эндогенных процессов





Крупными считаются месторождения с разведанными запасами (млн т) фосфатного сырья (их более 200), средними – от 50 до 200 и мелкими –менее 50.

Апатиты. Месторождения апатитов связаны с изверженными и метаморфическими породами и образуются в результате эндогенных процессов. В апатитовых рудах фосфат обычно четко раскристаллизован, его индивиды гораздо крупнее, обособлены от фосфатных минералов. Среди промышленных руд апатита выделяют собственно апатитовые руды, в которых апатит является главным промышленным минералом, и комплексные апатитсодержащие руды, в которых апатит извлекают попутно с другими компонентами. Типизация апатитовых руд представлена в табл. 5.

Апатитоносные провинции. В настоящее время на различных континентах Земли установлено 18 апатитоносных провинций, в пределах которых обнаружено более 100 месторождений апатитовых руд. В СНГ выделено 10 апатитоносных провинций: Карело-Кольская, Украинская, Шорско-Кузнецкая, Восточно-Саянская, Енисейско-Чадобецкая, Байкальская, Маймеча-Котуйская, Уджинская, Алданская и Джугджуро-Стано­вая. По запасам минерального фосфатного сырья крупнейшей из них является Карело-Кольская.

 

Таблица 4

Ресурсы и запасы фосфатных руд (млн т)
и среднее содержание Р2О5 в рудах, % [8]

Страна, часть света Продукт Ресурсы Запасы общие Запасы подтвержденные Их % от мира Среднее содержание
             
Россия Апатиты   807,2 276,6 4,85  
  Фосфориты 1417,5 191,9 35,7 0,63  
Европа   1647,1 328,9   4,35
Испания Апатиты 32,8 5,3 0,09  
  Фосфориты 0,5    
Украина Апатиты   79,1 66,7 1,17 3,5
Окончание табл.
             
  Фосфориты   12,3 6,7 0,12  
Эстония Фосфориты   167,6 156,9 2,75 12,5
Азия   17996,1 3607,4 1427,1 25,02
Вьетнам Апатиты     1,42  
Ирак Фосфориты       1,89  
Казахстан Фосфориты   1128,1   13,4  
Китай Апатиты     0,12 17,5
  Фосфориты 9520,4 57,5 57,5 1,01 27,4
Монголия Фосфориты       1,17  
Сирия Фосфориты     1,84  
Узбекистан Фосфориты   89,5 57,7 1,01  
Африка   20715,3 8270,4 2887,1 50,62
Алжир Фосфориты       2,61  
Египет Фосфориты     3,95  
Зап. Сахара Фосфориты       5,16  
Марокко Фосфориты   5917,4 1799,5 31,55 30,5
ЮАР Апатиты       3,88 8,8
Америка   23509,5 1993,5 600,6 10,53
Канада Апатиты       0,19 17,7
  Фосфориты     1,65  
Мексика Фосфориты       1,68  
США Фосфориты 16854,2     4,31 20,5
Океания и Австралия     927,6         –
Австралия Фосфориты       3,66 7,4

 

Таблица 5

Типы апатитовых руд [8]

 

Группа Класс Тип апатитовых руд Минеральный состав Содержание Р2О5, % Показатели обогащения, % Примеры месторождений
Р2О5 в концентрате Извлечение Р2О5
               
Позднемагматический Апатитнефелиновый Апатит, нефелин, сфен, эгирин, титаномагнетит     4–18     38–39       Хибин-ская группа
Продолжение табл.
               
    Магматическая   Апатит-ильменит-титано-магнети-товый Апатит, ильменит, титаномагнетит, приоксен, оливин, полевой шпат   3–8   34–39   65–75 Стремигородское, Кручининское, Джугд-журская группа
    Апатитовый Апатит, биотит, полевой шпат, амфибол, пироксен 3,5–6,0 35–37 75–85 Ошурковское, Укдусское
    Апатитмагнетит-редкометалльнокарбо-натный Апатит, магнетит, пирохлор, фергюсонит, флогопит, пироксен, полевой шпат   3,5–8,0   36–38   60–80 Ковдорское апатит-магнитовое, Белозиминское апатит-редкометалльное
    Апатит-карбонатный Апатит, кальцит, доломит, полевой шпат 3,5–5,0 35–37 65–70 Ков-дорское апатит-карбонатное, Новополтав-ское
Окончание табл.
               
Метаморфогенная Гидротермальнометасоматический Апатит-доломитовый Апатит, доломит, кальцит, кварц, гематит (мартит) 6–7 35–37 65–70 Селиградское, Хайчжоу, Синпхун
Выветривания Оста-точно-инфильт-рационный Апатит-фторкарбонат-апатитовый (штаффелиновый) Апатит, фторкарбонатапатит, вермикулит, магнетит 14–20 34–38 60–70 Ковдорское штаффелитовое, Ыpaac, Ессей
    Апатит-редкометалльный Апатит, пирохлор, фторкарбонатапатит 10–15 36–38 70–80 Белозиминское, Сокли
                       

Фосфориты. Они являются продуктом литогенеза морских осадков, образовавшихся химическим, биологическим и механическим путем. Подчиненную роль играют остаточные и инфильтрационные образования в корах выветривания.

Основные разновидности фосфоритов. По составу минеральных компонентов, насыщенности фосфоритами и структурно-текстурным особенностям выделяют следующие основные разновидности фосфоритов: желваковые, зернисто-ракушечниковые, массивные и др. Желваковые фосфориты представляют собой скопления округлых, овальных и неправильных конкреций, состоящих из различных нефосфатных минералов, сцементированных аморфным или кристаллическим фосфатным веществом. Размеры конкреций варьируют от долей миллиметра до 10–15 см. Залегают они в песках, глинах, мелу, конгломератах и других породах. Конкреции иногда сливаются в сплошную массу – фосфоритовую плиту. Содержание Р2О5 в исходной руде 8–14 %.

Зернисто-ракушечниковые фосфориты состоят из мелких отложений (оолитов) и галек фосфатов или из фосфоризированных раковин и их обломков, содержащихся в песках и песчаниках. Фосфориты этой разновидности легко обогащаются, и при содержании Р2О5 более 5 % в руде они являются промышленными.

Массивные фосфориты представляют собой однородные осадочные породы темно-серого, бурого и черного цвета. Под микроскопом устанавливается, что фосфориты этой разновидности состоят из мельчайших оолитов или кристаллических зерен фосфатного вещества, сцементированных кремнисто-фосфатным веществом. Они характеризуются высоким содержанием Р2О5, достигающим 26–28 % и более.

Классификация фосфоритовых месторождений. Различают платформенные и геосинклинальные месторождения. Для платформенных месторождений характерно: 1) широкое площадное распространение фосфоритоносных отложений; 2) небольшая мощность фосфоритовых пластов (несколько метров); 3) присутствие в разрезе фосфоритоносной толщи обычно одного-двух фосфоритовых пластов; 4) определенный состав вмещающих отложений – пески, глины, мергели, мел и опоки; 5) горизонтальное или слабонаклонное залегание фосфоритовых пластов.

Месторождения геосинклинального типа сложены чередующимися пластами кремнистых пород, известняков и доломитов, а также фосфоритов. Мощность фосфоритоносных толщ достигает 50–75 м. В них выделяется обычно до 7–10 фосфоритовых пластов, причем отдельные из них имеют мощность до 10–14 м. Фосфоритоносные толщи отличаются сложными условиями залегания: смяты в складки, разбиты разломами, сдвигами, иногда прорваны интрузиями, на контакте с которыми фосфориты бывают метаморфизованными до кристаллических апатитов.

Закономерности распределения фосфоритов. В геологической истории развития Земли существовали эпохи значительного фосфоритообразования. А. Л. Яншин и М. А. Жарков выделили три глобальные эпохи фосфоритообразования – венд-раннекембрийскую, мел-палеогеновую
и пермскую. В венд-раннекембрийскую эпоху образовалось почти
20 % всей массы фосфора на Земле. В мел-палеогеновую эпоху фосфориты формировались на огромной территории – в Восточно-Средиземноморском, Египетском, Алжиро-Тунисском, Марокканском, Западно-Сахарском и других бассейнах. В этих бассейнах сосредоточено около 59 % мировых запасов фосфоритовых руд.

Геология месторождений фосфоритов. В СНГ наиболее крупные месторождения фосфоритов находятся в Казахстане в Каратауском бассейне. Он расположен в Джамбульской и Чимкентской областях и приурочен к северо-восточным отрогам хребта Малый Каратау, вытянут в северо-западном направлении на 120 км при ширине 20–25 км.

В сроении бассейна принимают участие палеозойские и кайнозойские осадочные образования, залегающие на мощной докембрийской толще (метаморфические кварц-хлоритовые и тальк-хлорит-серицитовые сланцы, песчаники и др.). Протерозойские образования трансгрессивно с угловым несогласием перекрыты нижнепалеозойскими (нижний кембрий-средний ордовик) отложениями, в составе которых выделяются продуктивная кремнисто-карбонатная чулуктауская свита мощностью 50–100 м и перекрывающая ее карбонатная шабактинская свита. Чулуктауская свита подразделяется на четыре горизонта: нижних доломитов, кремневый, продуктивный и железистых доломитов (или железомарганцевый). Продуктивный горизонт в свою очередь расчленяется на три пачки – нижнюю фосфоритную (кондиционные фосфоритовые руды), среднюю фосфатно-сланцевую (фосфатные глинисто-кремнистые сланцы) и верхнюю фосфоритную. Породы смяты в складки, имеют, как правило, моноклинальное залегание, местами поставлены вертикально, нарушены многочисленными продольными, поперечными и диагональными разломами.

В Каратауском бассейне известно несколько десятков месторождений микрозернистых фосфоритов. Наиболее крупными из них являются Чулактау, Аксай, Коксу, Джанатас и Кокджон. Число продуктивных пластов обычно один-два, а на месторождении Коксу – три. Средняя их мощность 3–17 м, содержание Р2О5 23–27 %.

Месторождения фосфоритов Беларуси. В Могилевской области разведаны два месторождения – Мстиславльское и Лобковичское. Стратиграфически фосфориты связаны с отложениями сеноманского яруса верхнего отдела меловой системы.

На Мстиславльском месторождении мощность продуктивной пачки варьирует от 0,1 до 4,1 м (чаще 1,1–1,8 м). Содержание Р2О5 по подсчетным блокам составляет 6,0–7,6 %. Запасы фосфоритовых руд по категориям С12 оцениваются в 175 млн т. Средняя мощность вскрышных пород в пределах различных блоков изменяется от 27,9 до 36,2 м.

Лобковичское месторождение расположено в 10 км севернее г. Кричева. Полезное ископаемое залегает на глубине 20,6–79,0 м. Мощность продуктивной пачки в среднем 0,75–0,98 м. Содержание Р2О5 в руде колеблется от 2,5 до 14,5 % (в основном 4,9–6,3 %). Запасы фосфоритовых руд по категориям С12 составляют 245 млн т.

В конце 1990-х гг. выявлены два относительно небольших месторождения фосфоритов в Брестской области – Ореховское и Пограничное. Продуктивны палеогеновые отложения (желваковые фосфориты) и кора выветривания верхнемеловых образований (глинистые фосфориты).

Лекция 9. СЕРА

Геохимия и минералогия. Сера – неметаллический элемент с характерным ярко-желтым цветом. В природе она находится как в свободном состоянии, так и в виде неорганических и органических соединений, являясь 13-м элементом по распространенности. Среднее содержание ее в земной коре составляет 5 . 10-2 %, а в морской воде – 0,08–0,09 %. Сера распространена преимущественно в виде соединений, представленных сульфидами (пирит, марказит, халькопирит, сфалерит, галенит и др.), сульфатами (гипс, ангидрит, лангбейнит, полигалит и др.), присутствует в естественных газах (Н2S, SO2), нефтяных водах и водах некоторых минеральных источников, в сырой нефти и природном газе, входит в состав белков и содержится в организмах животных и в растениях.

Самородная сера бывает коллоидной (аморфной) и кристаллической. Известно шесть полиморфных модификаций ее, из которых только одна (альфа-сера), кристаллизующаяся в ромбической сингонии, устойчива в природных условиях. В составе серы преобладают изотопы 32S и 34S, отношение между которыми меняется от 21,61 до 22,60 и косвенно указывает на эндогенное или экзогенное ее происхождение.

Самородная сера встречается в виде зернистых или массивных скоплений. Твердость ее 1,5–2,5, плотность – 1,9–2,1 г/см3. Она плавится при температуре 110 о С, при температуре 248 о С воспламеняется и горит голубым пламенем с образованием SO2. Изоморфными примесями в ее составе являются селен, мышьяк, теллур, реже таллий. Основные механические примеси – карбонаты, глинистое вещество, ангидрит, гипс, твердые углеводороды. Сера нерастворима в воде и почти во всех кислотах, но легко растворяется в сероуглероде (CS3), в нефти, керосине и анилине.

Применение в промышленности. Основным потребителем серы (около 80 %) является химическая промышленность, в которой наибольшее количество ее идет для получения серной кислоты, используемой для производства фосфорных удобрений. Для выработки 1 т суперфосфата необходимо около 400 кг серной кислоты. В химической промышленности серная кислота применяется для получения других кислот (фосфорной, соляной и др.), пластмасс, красителей и др. В нефтяной промышленности она используется для очистки нефтепродуктов, в металлургии – для травления металлов.

В элементарном виде она находит применение в резиновой, бумажной, текстильной, пищевой промышленности. Используется также для производства инсектицидов, стекла, взрывчатых веществ.

До начала ХХ в. мировое потребление серы покрывалось в основном за счет месторождений на о. Сицилия. В течение 100 лет Италия была монополистом на мировом рынке серы. В 1904 г. США начали разрабатывать месторождения серы на побережье Мексиканского залива.

При общем мировом уровне получения серы приблизительно 50–55 млн т более 40 % приходится на переработку нефти и природного газа и около 25 % – на разработку месторождений самородной серы. Серу также получают в процессе улавливания из газовых выбросов коксохимического производства и цветной металлургии, при переработке пирита, пирротина и других сульфидов и сульфатов. Тем не менее месторождения самородной серы и ныне остаются одним из ведущих источников ее получения.

Типы руд самородной серы. Рудами считаются сероносные породы с содержанием серы не менее 5–8 %. По литологическому составу среди
них различают кальцитовые, кальцит-доломитовые, мергелистые, песчанистые, гипс-ангидритовые, опаловые, серные кварциты и др. В зависимости от текстурных особенностей выделяют руды вкрапленные, гнездово-прожилковые, полосчатые и иные. По агрегатному состоянию серы руды бывают дисперсные, скрытокристаллические и явнокристаллические.

Общетехнические требования и способы добычи. Общетехнические требования к рудам самородной серы в значительной мере различаются в зависимости от способа добычи и технологии обогащения руд. Добыча серных руд осуществляется открытым или подземным способами, а также путем выплавки серы непосредственно в недрах по способу Фраша. Минимальная рабочая мощность пласта серных руд обычно составляет 0,5–1,0 м. При разработке открытым способом коэффициент вскрыши иногда достигает 20/1–40/1.

При разработке месторождений серы горными выработками обычно учитывают содержание серы в горной массе, степень ее дисперсности, состав вмещающих пород, наличие вредных примесей (селен, мышьяк, битумы и др.). По содержанию серы различают руды: богатые (более 25 %), средние (10–25 %) и бедные (5–10 %).

Одним из наиболее прогрессивных является метод подземного расплавления серы, впервые примененный при разработке месторождений в районе Мексиканского залива в США. Сущность этого метода заключается в нагнетании в сероносные породы через скважины сильно перегретой воды, водяного пара (температура до 163 о С) и сжатого воздуха, расплавлении серы и откачке ее на поверхность. В СНГ метод Фраша применяется при разработке руд самородной серы на Ново-Яворском месторождении во Львовской области Украины. Эксплуатационные скважины расположены по квадратной сетке 50 х 50 м. Глубина скважин около 200 м.

Генетические типы промышленных месторождений. Существуют две группы промышленных месторождений самородной серы – эндогенная и экзогенная. Месторождения первой группы развиты в областях молодой и современной вулканической деятельности и связаны с вулканогенными и вулканогенно-осадочными породами; месторождения второй группы приурочены к толщам осадочных пород (преимущественно эвапоритовые формации).

Эндогенная группа месторождений. С месторождениями этой группы связано не более 5–10 % запасов серы. В состав группы входят: 1) гидротермальные, 2) эксгаляционные, 3) вулканогенно-осадочные, 4) месторождения-потоки серы.

Гидротермальные месторождения образуются в результате деятельности горячих сернокислых вод, вызывающих интенсивную переработку вулканогенных пород (преимущественно андезитов), их туфов, туффитов и туфобрекчий. Сера выделяется как при химическом взаимодействии сернокислых растворов с силикатами, так и при неполном окислении сероводорода и при реакциях между сероводородом и сернистым газом. Рудные тела сложены сернистыми кварцитами, опалитами, алунитами. Залежи имеют пластообразную, линзовидную и штокверковую форму. Мощность их от 1–2 до 20–25 м. Содержание серы в рудах достигает 30–40 %.

Эксгаляционные месторождения возникают за счет газовых выделений и отложения серы в кратерах вулканов, в полостях, трещинах и т. д. Залежи этого типа невелики по размерам, но содержат руды высокого качества.

Вулканогенно-осадочные месторождения формируются в кратерных озерах, на дне которых по трещинам выходили горячие источники с сероводородом и сернистым газом. Выделявшаяся при этом элементарная сера оседала на дне озера в смеси с пепловыми и иловыми частицами. Залежи серных руд имеют форму плоских линз с размерами в поперечнике до нескольких сотен метров и мощностью до 25 м.

Месторождения-потоки серы возникают в результате излияния расплавленной серы через жерло и боковые трещины вулканов. Расплавленная сера заполняет небольшие трещины, полости и застывает. Залежи имеют неправильную и языкообразную форму. Образование их связано с переплавлением серы из серных руд других генетических типов.

Экзогенная группа месторождений. На месторождения этой группы приходится более 90 % разведанных в мире запасов серы. Среди них выделяют два типа – стратиформный и солянокупольный.

Стратиформный тип месторождений серы является основным в мире. Месторождения этого типа генетически и пространственно связаны с эвапоритовыми толщами (формациями). Известно шесть таких сероносных формаций: 1) верхнеказанская (Р2к) (месторождения Среднего Поволжья: Водинское, Алексеевское, Сюкеевское и др.); 2) очоанская (Р2) (месторождения Делаверского бассейна в США: Дувал, Калберсон и др.); 3) верхнеюрская (J3) (месторождение Гаурдак в Туркмении); 4) тортонская (N1t) (месторождения Предкарпатского бассейна: Тарнобжег, Гржибов, Езерко, Сташув в Польше, Немировское, Язовское, Любеньское, Подорожненское, Раздольское на Украине); 5) мессинская (N1) (месторождение на о. Сицилия); 6) нижнефарская (N1) (месторождение Мишрак в Ираке).

Солянокупольный тип месторождений – второй после стратиформного по промышленной значимости. Месторождения этого типа широко распространены в районе Мексиканского залива (США и Мексика). Сероносные залежи приурочены к кепракам соляных куполов, обнаруживая при этом тесную связь с углеводородами.

Основные закономерности распространения. Месторождения серы крайне неравномерно размещены на Земле. Это побудило А. С. Соколова еще в 1949 г. выделить шесть сероносных провинций: 1) Андийскую (западное побережье Южной Америки); 2) Восточноазиатскую (Камчатка, Курильские, Японские и Филиппинские острова, Индонезия); 3) Техас-Луизианскую, или побережье Мексиканского залива (США, Мексика); 4) Средиземноморскую (о. Сицилия, юг Франции, Испания, Предкарпатье); 5) Среднеазиатскую (Киргизия, Таджикистан, Узбекистан, Туркмения, Кавказ, Аравийский полуостров, Южная и Юго-Восточная Азия); 6) Восточноевропейскую (Среднее Поволжье, Республика Коми, Урало-Эмбинский район, Приуралье).

Общим для размещения на Земле эндогенных и экзогенных месторождений серы является то, что они не характерны для областей, переживающих современную стадию покоя или консолидации с эпейрогеническими движениями блоков, а также для древних геосинклинальных поясов – шовных зон, закрывшихся в разное время океанических бассейнов. Промышленных залежей серы нет на щитах, они редки и обычно невелики по масштабам в глубине плит платформ, в поясах доальпийской складчатости, особенно байкальской, каледонской и герцинской.

На Земле наблюдается стратиграфическая приуроченность большинства промышленных экзогенных месторождений самородной серы к отложениям перми, юры и неогена. Эндогенные месторождения ее формировались в основном в кайнозое.

Ресурсы и запасы. Мировые запасы полезного компонента в месторождениях самородной серы оцениваются в 1,7–1,8 млрд т. Основные запасы ее сосредоточены в США, Мексике, России, Ираке, Италии. Более 50 месторождений самородной серы с разведанными запасами (млн т) считаются весьма крупными, 10–50 – крупными, 1–10 – средними, менее 1 – мелкими.

В связи с тем что в настоящее время основным источником получения серы являются углеводороды, отметим страны, обладающие наиболее крупными запасами этого вида минерального сырья. Странами-лидерами по подтвержденным запасам нефти и газоконденсата (млрд т) являются: Саудовская Аравия – 35,86 (23,1 % от мировых запасов), Россия – 21,25 (13,7 %), Ирак – 15,34 (9,9 %), Кувейт – 12,97 (8,4 %) и Иран – 12,40 (8,0 %). По подтвержденным запасам природного газа (трлн м3) лидируют следующие страны: Россия – 47,38 (33,9 %), Иран – 21,00 (15,07 %), Катар – 7,08 (5,08 %), ОАЭ – 5,80 (4,16 %), Саудовская Аравия – 5,36 (3,84 %) и США – 4,68 (3,36 %).

Геология месторождений самородной серы. Основное практическое значение имеет стратиформный тип месторождения, характерным представителем которого является месторождение Мишрак.

Месторождение Мишрак – одно из наиболее крупных в мире (запасы элементарной серы более 100 млн т). Оно расположено примерно в 300 км к северу от Багдада на левом берегу р. Тигр. В тектоническом отношении приурочено к складчатым образованиям Месопотамской депрессии – зоне шириной около 200 км, выполненной осадочными породами миоцена. Собственно месторождение контролируется Мишракской антиклиналью, вытянутой в северо-западном направлении на 11 км при ширине ее 3,5 км. В северо-западной части этой антиклинали имеются промышленные скопления природного газа.

Сероносными являются породы формации нижний фарс (средний миоцен, тортон), залегающие с несогласием на биогенных битуминозных евфратских известняках. В составе продуктивной толщи выделяются три рудные зоны, характеризующиеся преобладанием вторичного перекристаллизованного кальцита и самородной серы с битумом над первичными гипс-ангидритовыми породами. Мощность каждой из рудных зон около 30 м. Площадь контура промышленной минерализации составляет 10 км2. Среднее содержание серы в рудах 23,14 %. По текстурным особенностям руды весьма разнообразны – полосчатые, гнездовидные, рассеяно-вкрапленные, псевдобрекчиевые, прожилковые и рассеяно-прожилковые. Серные руды месторождения отличаются повышенной битуминозностью (до 10 %); другие примеси практически отсутствуют.

Образование Мишракского месторождения было обусловлено благоприятным сочетанием ряда факторов – наличием мощных сульфатных толщ, крупных скоплений УВ, благоприятных структурно-тектонических и гидродинамических условий. В результате взаимодействия углеводородов с сульфатными породами при участии сульфатредуцирующих бактерий произошло образование сероводорода и вторичного кальцита по реакции:

CaSO4 + CH4 + (бактерии анаэробные) среда восстановительная Н2S + + CaCO3 + H2O.

Образовавшийся сероводород, благодаря инфильтрации богатых кислородом поверхностных вод р. Тигр, окислялся и переходил в элементарную серу:

2H2S + O2 окислительная среда 2S + 2H2O.

Руды месторождения разрабатываются методом Фраша. Ежегодная добыча составляет около 600 тыс. т элементарной серы.

Лекция 10. БОР

Геохимия и минералогия. Как химический элемент бор впервые был получен Ж. Гей-Люссаком в 1808 г. при нагревании борной кислоты с металлическим калием. Кларк бора (по А. П. Виноградову) в земной коре составляет 1,2 . 10-3 %. Повышенные концентрации его наблюдаются в глинах и в глинистых сланцах (1,1 . 10-2 %), фосфоритах (1,3 . 10-2 %), железо-марганцевых конкрециях (1,1 . 10-2 %), а также в подземных водах вулканически активных районов и в нефтяных водах. Известны два стабильных изотопа бора 11 B и 10 B с соотношением примерно 4,2: 1.







Дата добавления: 2015-10-01; просмотров: 638. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия