Введение 6 страница. Применение в промышленности. Основными потребителями бора являются стекольная и керамическая промышленность: оптические стекла
Бор входит в состав многих минералов, общее число которых достичает ста шестидесяти. Большинство из них являются боратами магния, кальция, натрия и калия. Известны также боросиликаты и боралюмосиликаты. Однако промышленное значение имеет сравнительно небольшое количество минералов (табл. 6). Применение в промышленности. Основными потребителями бора являются стекольная и керамическая промышленность: оптические стекла, кислото- и огнеупорные изделия, теплоизолирующие стекловолокна, эмали, глазури и др. В значительных объемах (15–30 %) борное сырье используется в мыловарении и производстве отбеливающих средств. В небольшом количестве бор применяется в медицине, в металлургии как присадка к стали, в резиновой, парфюмерной, лакокрасочной и кожевенной промышленности. Используется он также и в сельском хозяйстве. Особенно расширились области применения бора в последнее время. Бориды (соединения бора с металлами) используются при производстве особо прочных деталей газовых турбин и деталей реактивных двигателей. Карбид бора (В4С) ввиду его способности поглощать нейтронт используется для регулирования работы атомных реакторов. Типы руд. В зависимости от технологии переработки выделяются следующие промышленные типы руд: 1) бораты, растворимые в воде (бура, кернит, сассолин и др.); 2) бораты, растворимые в кислотах (пандермит, гидроборацит и др.); 3) боросиликаты, растворимые в кислотах (датолит); 4) боросиликаты, нерастворимые в кислотах (данбурит); 5) борсодержащие воды, рапа соляных озер, нефтяные воды, горячие источники. Общетехнические требования. Боратовые руды (первый и второй типы) отличаются хорошими технологическими свойствами и при содержании В2О3 более 13 % идут в переработку без обогащения. Максимальное содержание В2О3 в них нередко составляет 20–30 %, а минимальное – 2–6%. Вредные примеси в рудах – кальций, магний, сульфаты железа и алюминия. Боросиликатные руды (датолитовые и данбуритовые) по качеству делятся на высокосортные (содержание В2О3 более 10 %), среднесортные (5–10 %) и низкосортные (3–5 %). Эти руды требуют обогащения. Рапа соляных озер (солары) характеризуется отностительно невысоким содержанием В2О3 (0,5–2,2 %). Однако в связи с простой технологией извлечения В2О3 из рапы эксплуатация таких месторождений экономически является рентабельной. Ресурсы и запасы. Бораты до недавнего времени относились к стратегическому сырью, поэтому полной информации о ресурсах и запасах их не имеется. Подтвержденные запасы борного сырья в мире (без учета России, Китая и стран бывшего социалистического лагеря) составляют около 200 млн т В2О3. Наиболее крупные запасы В2О3 (около 50 % от мировых) имеются в США и Турции (около 30 %). Значительными запасами этого вида минерального сырья обладают Аргентина, Чили, Боливия, Перу, а также Россия и Китай. Уникальные месторождения с запасами руды более 10 млн т крайне редки (Крамер в США). Наиболее характерны средние (от 250 до 1000 тыс.т) и мелкие (менее 50 тыс т) месторождения. Генетические типы промышленных месторождений. Известны следующие генетические типы промышленных месторождений боратов: 1) скарновый (контактово-метасоматический); 2) эксгаляционный; 3) вулканогенно-осадочный; 4) химический (галогенный); 5) остаточный и инфильтрационный. Скарновый тип месторождений бора подразделяется на известково-скарновый и магнезиально-скарновый подтипы. Известково-скарновые месторождения приурочены к скарнам, образовавшимся в результате метасоматического замещения карбонатных пород при воздействии на них гранитоидных интрузивов. Борсодержащие минералы представлены датолитом, данбуритом и аксинитом. Форма рудных тел – линзо- и пластообразные залежи, жилы, тела неправильной формы. Содержание В2О3 в рудах варьирует от 5 до 15 %. К месторождениям этого подтипа относятся Дальнегорское в Приморье и Золотой Курган на Кавказе (Россия), Лиштице (Чехия) и др. Магнезиально-скарновые месторождения формируются на контакте доломитов с интрузивными породами, преимущественно с гранитами, гранодиоритами и диоритами. Скарны сложены в основном диопсидом, шпинелью, форстеритом. По составу боратов магнезиально-скарновые месторождения делятся на три группы: суанитовую, котоитовую и людвигитовую. Содержание В2О3 в котоитовых рудах составляет 6–8 %, людвигитовых – 4–10 %, суанитовых – 12–17 %. Месторождения этого подтипа известны в России (Таежное на Алданском массиве), КНДР (Холь-Гол), Казахстане, США, Италии, Турции и других странах. Эксгаляционный тип – это бороносные термальные источники (фумаролы и сольфатары с температурой 90–200 о С). Они содержат борную кислоту (сассолин), количество которой колеблется от сотых долей процента до 0,5 %. Месторождения этого типа эксплуатируются в Италии (Тоскана). Вулканогенно-осадочный тип месторождений образует пластовые и линзообразные залежи, сложенные вулканогенно-соленосно-глинистыми породами, содержащими большое количество боратов. Источником бора являются вулканические эксгаляции или вулканогенные породы обычно базальтового состава, из которых бор легко выщелачивался и накапливался в бессточных или слабо проточных котловинах (пресных или соленых озерах). Выпадение борных минералов присходило в результате химических реакций, протекавших в водах озер, или частично путем замещения известковистых осадков борными минералами. На месторождениях этого типа базируется борная промышленность США, Турции, Аргентины и Чили. Химический (галогенный) тип месторождений бора парагенетически связан с сульфатными залежами калийных солей. Бор осаждался в лагунах и усыхающих морских бассейнах при весьма высокой солености рапы. Он входил в состав калиборита, гидроборацита, борацита и других магниевых и кальциево-магниевых боратов. Залежи – пластообразной и линзообразной формы. Содержание В2О3 в первичных бедных рудах увеличивается до 10–25 % за счет выноса из вмещающих пород легкорастворимых солей натрия и калия. Остаточные и инфильтрационные месторождения обычно приурочены к гипсовым шляпам соляных куполов. В результате проявления гипергенных процессов первично осажденные бораты замещаются улекситом, ашаритом и иньоитом. Содержание В2О3 в первичных бедных рудах увеличивается до 10–25 % за счет выноса из вмещающих пород легкорастворимых солей натрия и калия. Бораты могут растворяться в грунтовых водах и переотлагаться в пределах гипсовой шляпы, образуя инфильтрационные залежи линзообразной формы. Бораты представлены вторичным гидроборацитом, улекситом, иньоитом и другими минералами. Геология месторождений боратов. Одним их крупнейших в мире является месторождение боратов Крамер (Борон). Оно расположено в пустыне Мохаве (штат Калифорния) и относится к типу вулканогенно-осадочных. Приурочено к озерным отложениям миоценового возраста, залегающим со стратиграфическим несогласием на изверженных и метаморфических породах. С верхней частью разреза озерных отложений (слои Крамер) связано бороносное рудное тело, расположенное среди синих и зеленых сланцев. Главное рудное тело представляет пластовую залежь мощностью 25–90 м, залегающую на глубине 40–340 м и распространенную на площади около 2 км2. Рудное тело представлено переслаиванием пластов и прослоев боросодержащих пород мощностью до 10 см, а также линзами, желваками и включениями кернита, буры и тинкаконита. Изредка встречаются улексит, сирлезит и проберит. Бороносные пласты разделяются тонкими слоями монтмориллонитовых глин и вулканических туфов. На участках распространения богатых руд среднее содержание В2О3 составляет 25–30 %. В восточной и южной частях месторождения выявлено несколько разломов типа сбросов. На участках спокойного залегания рудного тела борная минерализация представлена в основном бурой, а в пределах тектонически осложненных зон – бурой, кернитом и тинкаконитом. Запасы боратов этого месторождения составляют около 100–120 млн т. Оно разрабатывается с 1926 г. открытым способом. Руда (бура и кернит) после добычи здесь же измельчается, просеивается и растворяется с получением насыщенной бурой жидкости. Эта жидкость фильтруется; в процессе ее кристаллизации получают рафинированные кристаллы декагидрата и пентагидрата буры. Дальнегорское месторождение боратов расположено в Приморье (Россия). В тектоническом отношении рудное поле с наложенным свинцово-цинковым и боросиликатным оруденением представляет собой горстовую структуру складчато-глыбового строения. Собственно Дальнегорское борное месторождение приурочено к тектонической структуре 2-го порядка (горст-антиклинали), вытянутой в северо-восточном направлении на 4,5 км при ширине ее 1–2 км. Промышленная залежь (скарнированные известняки триасового возраста) расположена в пределах юго-восточного крыла этой структуры. Рудные тела имеют форму линзо- и пластообразных залежей. Структура руд – разнозернистая (преимущественно среднезернистая), текстура – пятнистая, полосчатая, друзовая, брекчиевидная. Основным промышленным минералом является датолит, подчиненное значение имеют данбурит и аксинит. В составе руд широко представлены волластонит, геденбергит, андрадит, кальцит, кварц и другие минералы. Содержание В2О3 в рудах составляет 2–11 %. Дальнегорское месторождение боратов разрабатывается открытым способом более 40 лет ПО «Бор». Руда обогащается, и после разложения серной и угольной кислотами получают около десяти различных видов боропродуктов. Таблица 6 Главнейшие минералы бора промышленных месторождений
Лекция 11. АСБЕСТ Общие сведения об индустриальном сырье. Многие виды неметаллического минерального сырья представлены вполне определенными минералами с их специфическими физическими свойствами и химическим составом и непосредственно используются в промышленности в своем естественном виде. Такое сырье обычно принято называть индустриальным, или индустриально-техническим. Его переработка сводится к извлечению из горной массы промышленно ценных минералов и осуществляется механизированным способом (флотация, воздушная, магнитная, электромагнитная сепарация и т. п.) либо вручную. Наиболее характерными представителями этой группы минерального сырья являются асбест, графит, слюды, барит, магнезит, флюорит и др. Минералогия. Асбестами называютсяминералы, которые легко расщепляются на тончайшие прочные и гибкие волокна, выдерживающие высокие температуры. К ним относятся хризотил-асбест, крокидолит, амозит, антофиллит, иногда тремолит, актинолит, режикит и др. По своей атомной структуре хризотил-асбест принадлежит к минеральной группе серпентина, а все остальные – к группе амфиболов. Хризотил-асбест («белый асбест») – волокнистая разновидность водного силиката магния – серпентина. Состав его отвечает формуле Mg6[Si2O5](OH)8 или 3MgO . 2SiO2 . 2H2O. В качестве изоморфной примеси, замещающей оксид магния, присутствует FeO, а механическими примесями являются Fe2O3, Al2O3, Cr2O3, MnO, NiO, CaO, Na2O и Н2О. Элементарные кристаллы-волокна обладают трубчатым строением и имеют форму полых цилиндров с внешним диаметром 260 А, внутренним – 130 А и толщиной стенок 65 А. Хризотит-асбест слагает жилки в темно-зеленых серпентинитах. Характеризуется высокой температурой плавления (1521 0С), при температуре 700 о С теряет конституционную воду и становится хрупким. Твердость его 3–3,5, средняя плотность – 2,5 г/см3. Хризотит-асбест щелочеустойчив, но мало устойчив к воздействию кислот, обладает высокими сорбционными, тепло-звуко- и электроизоляционными свойствами. Волокна его имеют длину от сотых долей миллиметра до 250–300 мм, обычно до 6–7 мм. Крокидолит («голубой или синий асбест») – волокнистая разновидность рибекита. Кристаллизуется в моноклинальной сингонии. Химический состав крокидолита выражается формулой Na2Fe5[Si4O11]2(OH)2 или Na2O . 3FeO . Fe2O3 . 8SiO2 . H2O. Встречается в поперечно-волокнистых жилках. Температура плавления – 1193 о С. По механической прочности не уступает хризотил-асбесту, но теряет конституционную воду при температуре 200–500 о С. Обладает высокими тепло- и электроизоляционными свойствами. Обычная длина волокна 1,5–30 мм, максимальная – 75 мм. Амозит («коричневый асбест») – это водный магнезиальный силикат сложного и непостоянного состава с большим содержанием глинозема. Его химический состав MgFe3[Si4O11]2(OH)2 или MgO . 6FeO . 8SiO2 .H2O. Цвет амозита пепельно-серый до коричневого, после извлечения из породы – белый. Температура плавления – 1100–1200 о С, устойчив к воздействию кислот и щелочей. Для него характерна большая длина волокна, в среднем 100–175 мм. Применение в промышленности. Асбесты широко применяются во многих отраслях промышленности. Использование их основано на охарактеризованных выше свойствах асбестовых минералов, а также в зависимости от длины волокна. Существует два класса асбестов – текстильное волокно и группа строительных сортов. Особенно широкое применение имеет хризотил-асбест. К текстильному асбесту относят сорта с длиной волокна более 8 мм. Асбестовое волокно используется в производстве пряжи и тканей, идущих для изготовления защитных огнестойких костюмов, брезентов, тормозных лент, дисков сцепления, электроизоляционных лент, прокладок, фильтров и других видов продукции. В шиферно-картонно-бумажном производстве хризотил-асбест применяется для изготовления шифера, асбоцементных труб для канализации, водопровода, для получения асбестовой бумаги и картона, а также в производстве тепло- и электроизоляционных смесей и теплостойких пластмасс. Сорта асбеста с короткой длиной волокна в смеси с цементом широко используются в производстве строительных материалов (асбоцементные плиты, листы для внутренней облицовки зданий и т. п.). Амфибол-асбесты (крокидолит, амозит и др.) применяются в химической промышленности для производства различных кислото-щелочных изделий (фильтров, прокладок, пластмасс и др.), а их длинноволокнистые сорта являются текстильным сырьем. Типы руд. В природе волокна асбеста встречаются в агрегатах трех типов. Наиболее часто наблюдаются поперечно- и косоволокнистые агрегаты, слагающие жилы, в которых волокна асбеста ориентированы строго параллельно друг другу, но располагаются или перпендикулярно к стенкам жилы (поперечно-волокнистые жилки), или под косым углом (косоволокнистые жилки). Они характерны в основном для хризотил-асбеста, крокидолита и амозита. Выделяются четыре типа жилкования: 1) простые отороченные жилы (нередко с просечками в центре их); 2) сложные отороченные жилы (серия взаимно параллельных жилок); 3) жилы типа крупной сетки, представленные разнообразно ориентированными поперечно-волокнистыми жилами, иногда пересекающимися между собой, но чаще плавно сопряженными друг с другом; 4) мелкопрожил – серия взаимно параллельных поперечно-волокистых жилок мощностью 2–3 мм, реже 5–6 мм. Продольно-волокнистые агрегаты образуют жилки, в которых волокно располагается параллельно стенкам. Это обычно длинное волокно, но в основном низкого качества. Продольно-волокнистый асбест встречается в месторождениях хризотил-асбеста и антофиллита. Типичный представитель этой группы – Карачаевское месторождение асбеста на Северном Кавказе. Спутанно-волокнистые агрегаты образованы разно ориентированными пучками, радиально-лучистыми гнездами или тончайшими жилками радиально расположенных иголок и волокон асбеста. Под микроскопом мельчайшие пучки, гнезда и тончайшие жилки волокон представляют так называемое волокно массы («mass fiber»). Агрегаты этого типа свойственны антофиллиту, родуситу и режикиту. Общетехнические требования и способы добычи. Ценность асбеста помимо огнестойкости и устойчивости к воздействию кислот определяется также длиной его волокна и прочностью. По длине волокна выделяют восемь групп: от 0 (нулевой) до 7-й. Для нулевой группы длина волокна превышает 13 мм, а для седьмой составляет менее 1 мм. По прочностным свойствам выделяют следующие разновидности асбеста: 1) высокой прочности (прочность на растяжение около 300 кг/мм2); 2) полуломкий, или пониженной прочности; 3) ломкий, или слабой прочности (прочность на растяжение 110–220 кг/мм2). Асбестовые руды, как правило, разрабатываются с помощью открытых работ. Высокосортное волокно «крюд» нередко добывают вручную. При добыче хризотил-асбеста производят валовую выемку асбестоносных пород. Поскольку содержание волокна в них составляет лишь немногие проценты, приходится при этом перерабатывать огромные объемы горной породы. В настоящее время в мире (Канада, США и др.) наблюдается тенденция к переходу на подземные работы с применением системы отработки с магазинированием или более производительной системы с массовым поэтажным обрушением. Ресурсы и запасы. Запасы (общие) асбестового волокна всех минеральных видов в мире (без России и Китая) составляют около 100 млн т, из них на хризотил-асбест приходится около 95 %. В странах СНГ общие запасы хризотил-асбеста превышают 180 млн т. Основные ресурсы и запасы этого минерального сырья сосредоточены в России и Канаде. Крупными считаются месторождения хризотил-асбеста с запасами волокна (млн т) более 5, средними – 0,5–5, мелкими – менее 0,5. Для месторождений амфибол-асбеста принято следующее деление (тыс. т): крупные – более 50, средние – 5–50 и мелкие – менее 5. Генетические типы промышленных месторождений. В настоящее время выделяются четыре главнейших геолого-промышленных типа месторождений асбеста. Первый тип – линзо- и трубообразные залежи и жилы с хризотиловой минерализацией в серпентинизированных ультрабазитах. С этим типом связаны наиболее крупные месторождения хризотил-асбеста (Баженовская группа на Урале, Тетфордский пояс в провинции Квебек в Канаде и др.). По характеру жилкования (строению жил асбеста) выделяются три подтипа – баженовский, лабинский и карачаевский. Месторождения баженовского подтипа представляют собой крупные (до 600 м) крутопадающие тела, характеризующиеся концентрически-зональным строением, обусловленным различными типами асбестоносности: мелкопрожила, мелкой и крупной сеток, простых и сложных жил. К этому типу относится большинство месторождений Урала (Баженовское, Киембаевское, Джетыгаринское), Сибири (Саянское, Молодежное и др.), Канады (Джеффри, Блэк-Лейк, Клинтон-Крик и др.), Зимбабве (Машаба, Шабани) и других стран. Месторождения лабинского подтипа представлены простыми или сложными жилами поперечно-волокнистого асбеста. Наиболее типичные представители – месторождение Лабинское на Северном Кавказе, Нью-Амиантус в ЮАР и др. Месторождения карачаевского подтипа характеризуются продольно-волокнистым жилкованием по плоскостям трещин и скольжением в серпентинитах (Карачаевское месторождение в России, Ешкеульмесское в Казахстане, Ист-Броутон в Канаде и др.). Образование хризотил-асбеста в серпентинизированных и стратиформных массивах ультрабазитов связано с воздействием гидротермальных растворов, природа которых дискуссионна. Процесс серпентинизации ультраосновных пород происходил под действием кремнекислых либо углекислых гидротерм: 3 (Mg, Fe)2SiO4 + 4H2O + SiO2 = 2 H4(Mg, Fe)3Si2O9; оливин серпентин 2 (Mg, Fe)2SiO4 + 2H2O + CO2 = H4 (Mg, Fe)3Si2O9 + (Mg, Fe)CO3 оливин серпентин брейнерит Второй тип – пластовые и жилообразные зоны серпентинизации с хризотиловой минерализацией в метаморфизованных магнезиальных карбонатных толщах. Втречаются значительно реже месторождений первого типа. Для них наиболее характерны единичные жилы (Аспогашское месторождение в России, месторождения в штате Аризона). Иногда наблюдаются сетчатые жилы, мелкопрожил, просечки (Вангырское месторождение на Полярном Урале, месторождения в Китае и др.). Все месторождения этого типа считаются контактово-метасоматическими. Они локализованы в магнезиальных карбонатных породах вблизи контакта с изверженными основными или кислыми породами. Серпентинизация и асбестообразование происходили в гидротермальную стадию контактового метасоматоза по доломитам в условиях привноса кремнекислоты: 3CaMg(CO3)2 + 2H2O + 2SiO2 = H4Mg3Si2O9 + 3 CaCO 3 + 3CO2. доломит серпентин кальцит Достоинством асбестового волокна месторождений этого типа является исключительно низкая железистость, что предопределяет использование его в электротехнической промышленности. Третий тип – пластовые жилы с крокидолитом и амозитом в железо-кремнистых породах типа железистых кварцитов и яшм близ контактов с доломитами. Месторождения этого типа известны в ЮАР (Трансвааль и Капская провинция), в Западной Австралии. Четвертый тип – гнездо-, линзо- и штокообразные тела с антофиллит-асбестовой минерализацией в метаморфизованных ультрабазитах амфиболито-гнейсовых комплексов. Характерна тесная связь месторождений этого типа с метаморфизованными ультраосновными породами в составе амфиболито-гнейсовых комплексов регионального метаморфизма. Типичные представители – Сысертское месторождение на Урале, Бугетысайское в Мугоджарах, месторождения Финляндии, США и других стран. Геология месторождений асбеста. В СНГ крупнейшим по запасам и экономическому значению является Баженовский асбестоносный район, находящийся в Свердловской области. Здесь выявлен ряд месторождений, крупнейшим из которых является Баженовское (близ г. Асбест), открытое в 1885 г. русским землемером А. П. Лодыженским. Это месторождение приурочено к Баженовскому массиву гипербазитов, входящему в состав полосы габбро-перидотитов Среднего Урала, простирающейся в субмеридиональном направлении примерно на 180 км. Баженовский гипербазитовый массив также имеет субширотное простирание, длина его составляет около 30 км, ширина – 1,1–3,5 км, площадь – 75 км2. Тектоническими разломами гипербазитовый массив разбит на ряд блоков. Вдоль зон разломов гипербазиты (гарцбургиты, пироксениты Для залежей характерно зональное строение. Центральные (ядерные) части представлены перидотитами и не содержат промышленной асбестизации. По направлению к периферии от них сначала появляется зона простых и сложно отороченных жил, затем зона крупной сетки, далее – зона мелкой сетки, зона мелкопрожила и зона просечек с единичными жилами асбеста. Месторождения Баженовского асбестоносного района являются крупнейшими в мире, эксплуатируются рядом крупных карьеров. Карьеры имеют размеры в длину до 4 км при ширине до 1,5 км. Глубина отдельных из них достигает 200 м. Ежегодно добыча составляет 1,5–2 млн т минеральной массы. Месторождения амозита и крокидолита ЮАР. Основные месторождения амозита сосредоточены в провинции Трансвааль в пределах обширного рудного поля, представляющего дугообразную полосу длиной 100 км, окаймляющую северо-восточное окончание Бушвельдского интрузивного комплекса. В геологическом строении рудного поля принимают участие породы трансваальской супергруппы докембрия (кварциты, доломиты, железистые кварциты, яшмы, сланцы и др.). Амозит-асбестовая минерализация приурочена к толще железистых кварцитов и яшм, перекрывающей доломиты и смятой в пологие синклинальные и антиклинальные складки. Максимальная мощность этой толщи достигает 700 м. Амозит-асбест синевато-серый, поперечно-волокнистый, образует серию согласных прожилков, содержащих крупные кристаллы грюнерита и скопления графита. Амозитсодержащие слои подстилаются и перекрываются железистыми кварцитами. В пределах каждого их слоев фиксируется до 5–6 параллельных прожилков со средней длиной волокна 10–12 см. Несколько слоев с амозит-асбестовой минерализацией образуют четко стратифицированную продуктивную пачку. В разрезе железистых кварцитов яшм наблюдаются четыре такие пачки мощностью до 10 м каждая. Месторождения крокидолита находятся в Капской провинции и сосредоточены в пределах полосы, вытянутой на 400 км и шириной до 45 км. Они связаны с образованиями той же трансваальской супергруппы докембрия. Крокидолитовая минерализация приурочена к группе гхаап, сложенной преимущественно доломитами с пачками полосчатых железистых кварцитов. Главная промышленная зона представляет чередование грубо- и тонкослоистых магнетитовых кварцитов с согласными жилами поперечно-волокнистого крокидолита. Выделяется до восьми асбестоносных жил со средней длиной волокна 15–20 мм. Зона промышленной крокидолитовой минерализации имеет прерывистый характер. Разработка осуществляется посредством небольших открытых горных выработок.
|