Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Следствия из преобразований Лоренца. Время ПОНЕДЕЛЬНИК ВТОРНИК СРЕДА Предмет Каб. Преподаватель Предмет Каб.


 

 

Время ПОНЕДЕЛЬНИК ВТОРНИК СРЕДА
Предмет Каб. Преподаватель Предмет Каб. Преподаватель Предмет Каб. Преподаватель
08.30 – 10.00 Право лекция нов. кор. К.и.н., доц. Лисицына Н.Ф. Право лекция нов. корп. К.и.н., доц. Лисицына Н.Ф. Экономика лекция стар. корп. ст.преподаватель Белова Т.М.
10.20 – 11.50 Математика лекция нов. кор Преп. ДектеренкоА.И. Математика лекция нов. корп. Преп. ДектеренкоА.И. Обществознание лекция стар. корп. преподаватель Гордеев В.В.
12.10 – 13.40 ОБЖ лекция нов. кор. преподаватель Кузьмичёва А.В. Русский язык лекция нов. корп. Преподаватель Сергеева Г.Н. Информатика лекция стар. корп. Преп. Мартынова Е.А.
13.50 – 15.20       Литература лекция нов. корп. Преподаватель Сергеева Г.Н. Информатика лекция стар. корп. Преп. Мартынова Е.А.
15.30 – 17.00                  

 

Время ЧЕТВЕРГ ПЯТНИЦА СУББОТА
Предмет Каб. Преподаватель Предмет Каб. Преподаватель Предмет Каб. Преподаватель
08.30 – 10.00       История лекция нов. корп. к.ист.н., доц Алексеева М.А.      
10.20 – 11.50 География лекция Веч. Шк. Ст.Препод. Плотникова Т.Н. Математика лекция нов. корп. Преп. ДектеренкоА.И      
12.10 – 13.40 Математика лекция нов. корп. Преп. ДектеренкоА.И. Физкультура практика ФОК Преп. Сёмин А.П.      
13.50 – 15.20 Англ.язык практика нов. корп. ст.преподават. Кузнецова Н.К. Естествознание Лаб. раб Веч. Шк. Ст.Препод. Плотникова Т.Н.      
15.30 – 17.00       Естествознание Лаб. раб Веч. Шк. Ст.Препод. Плотникова Т.Н.      

 

Начальник УМО Ж.А. Мартьянова

 

Следствия из преобразований Лоренца

1. Одновременность событий в разных системах отсчета. Пусть в системе К в точках с координатами x 1 и x 2 в моменты времени t 1 и t 2 происходят два события. В системе К' им соответствуют координаты и и моменты времени и . Если события в системе К происходят в одной точке (x 1 2являются одновременными (t 1 =t 2), то, согласно преобразованиям Лоренца (36.3),

т. е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.

Если события в системе К пространственно разобщены (х 1 ¹ x 2), но одновременны (t 1 = t 2), то в системе К', согласно преобразованиям Лоренца (36.3),

Таким образом, в системе К' эти события, оставаясь пространственно разобщенными, оказываются и неодновременными. Знак разности определяется знаком выраже­ния v (x 1x 2 ), поэтому в различных точках системы отсчета К' (при разных v) разность будет различной по величине и может отличаться по знаку. Следовательно, в одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому. Сказанное, однако, не относится к причинно-следственным событиям, так как можно показать, что порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета.

2. Длительность событий в разных системах отсчета. Пусть в некоторой точке (с координатой х), покоящейся относительно системы К, происходит событие, длитель­ность которого (разность показаний часов в конце и начале события) t = t 2 – t 1, где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К'

(37.1)

причем началу и концу события, согласно (36.3), соответствуют

(37.2)

Подставляя (37.2) в (37.1), получаем

или

(37.3)

Из соотношения (37.3) вытекает, что t < t ', т. е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Этот результат может быть еще истолкован следующим образом: интервал времени t', отсчитанный по часам в системе К', с точки зрения наблюдателя в системе К, продолжительнее интервала t, отсчитанного по его часам. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т. е. ход часов замедляется в системе отсчета, относительно которой часы движутся. На основании относительности понятий «неподвижная» и «движущаяся» системы соотношения для t и t ' обратимы. Из (37.3) следует, что замедление хода часов становится заметным лишь при скоростях, близких к скорости распространения света в вакууме.

В связи с обнаружением релятивистского эффекта замедления хода часов в свое время возникла проблема «парадокса часов» (иногда рассматривается как «парадокс близнецов»), вызвавшая многочисленные дискуссии. Представим себе, что осуществля­ется фантастический космический полет к звезде, находящейся на расстоянии 500 световых лет (расстояние, на которое свет от звезды до Земли доходит за 500 лет), со скоростью, близкой к скорости света ( =0,001). По земным часам полет до звезды и обратно продлится 1000 лет, в то время как для системы корабля и космонав­та в нем такое же путешествие займет всего 1 год. Таким образом, космонавт возвратится на Землю в раз более молодым, чем его брат-близнец, оста­вшийся на Земле. Это явление, получившее название парадокса близнецов, в дейст­вительности парадокса нt содержит. Дело в том, что принцип относительности утверждает равноправность не всяких систем отсчета, а только инерциальных. Неправиль­ность рассуждения состоит в том, что системы отсчета, связанные с близнецами, не эквивалентны: земная система инерциальна, а корабельная — неинерциальна, поэтому к ним принцип относительности неприменим.

Релятивистский эффект замедления хода часов является совершенно реальным и получил экспериментальное подтверждение при изучении нестабильных, самопроиз­вольно распадающихся элементарных частиц в опытах с p-мезонами. Среднее время жизни покоящихся p-мезонов (по часам, движущимся вместе с ними) t» 2,2×10–8 с. Следовательно, p-мезоны, образующиеся в верхних слоях атмосферы (на высоте»30 км) и движущиеся со скоростью, близкой к скорости с, должны были бы прохо­дить расстояния сt» 6,6 м, т. е. не могли бы достигать земной поверхности, что противоречит действительности. Объясняется это релятивистским эффектом замедления хода времени: для земного наблюдателя срок жизни p-мезона t ' = t / , а путь этих частиц в атмосфере vt ' = bct '= bct/ . Так как b»1, то vt '>> ct.

3. Длина тел в разных системах отсчета. Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет , где и не изменяющиеся со временем t' координаты начала и конца стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Определим длину этого стержня в системе К, относительно которой он движется со скоростью v. Для этого необходимо измерить координаты его концов x 1 и x 2 в системе К в один и тот же момент времени t. Их разность l = х 2 – х 1 и определяет длину стержня в системе К. Используя преобразования Лоренца (36.3), получим

т. е.

(37.4)

Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К', опять-таки придем к выражению (37.4).

Из выражения (37.4) следует, что линейный размер тела, движущегося отно­сительно инерциальной системы отсчета, уменьшается в направлении движения в раз, т. е. так называемое лоренцево сокращение длины тем больше, чем больше скорость движения. Из второго и третьего уравнений преобразований Лоренца (36.3) следует, что

т. е. поперечные размеры тела не зависят от скорости его движения и одинаковы во всех инерциальных системах отсчета. Таким образом, линейные размеры тела наибольшие в той инерциальной системе отсчета, относительно которой тело покоится.

4. Релятивистский закон сложения скоростей. Рассмотрим движение материальной точки в системе К', в свою очередь движущейся относительно системы К со скоро­стью v. Определим скорость этой же точки в системе К. Если в системе К движение точки в каждый момент времени t определяется координатами х, у, z, а в системе К' в момент времени t ' — координатами х', у', z', то

представляют собой соответственно проекции на оси х, у, z и х', у', z' вектора скорости рассматриваемой точки относительно систем К и К'. Согласно преобразованиям Лоренца (36.3),

Произведя соответствующие преобразования, получаем релятивистский закон сложения скоростей специальной теории относительности:

(37.5)

Если материальная точка движется параллельно оси х, то скорость и относительно системы К совпадает с ux, а скорость и' относительно К' — с . Тогда закон сложения скоростей примет вид

(37.6)

Легко убедиться в том, что если скорости v, и' и и малы по сравнению со скоростью с, то формулы (37.5) и (37.6) переходят в закон сложения скоростей в классической механике (см. (34.4)). Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью распространения света в вакууме) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей.

 

Релятивистский закон сложения скоростей подчиняется второму постулату Эйнштейна. Действительно, если u' = c, то формула (37.6) примет вид (аналогично можно показать, что при и = с скорость u' также равна с). Этот результат свидетельствует о том, что релятивистский закон сложения скоростей находится в со­гласии с постулатами Эйнштейна.

Докажем также, что если складываемые скорости сколь угодно близки к скорости с, то их результирующая скорость всегда меньше или равна с. В качестве примера рассмотрим предельный случай u ' = v = с. После подстановки в формулу (37.6) получим и = с. Таким образом, при сложении любых скоростей результат не может превысить скорости света с в вакууме. Скорость света в вакууме есть предельная скорость, которую невозможно превысить. Скорость света в какой-либо среде, равная с / n (n — абсолютный показатель преломления среды), предельной величиной не является.

 




<== предыдущая лекция | следующая лекция ==>
 | 

Дата добавления: 2015-10-01; просмотров: 299. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия