Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 4.


  1. Подставить в выражение предельное значение аргумента.
  2. Определить есть или нет неопределенность. Если нет, дать ответ.
  3. Если неопределенность есть, то по ее виду выбрать одно из правил устранения этой неопределенности.
  4. Преобразовать выражение согласно выбранному правилу, и к новой форме предела применить данный алгоритм, начиная с п.1.

Правило 1.

Чтобы раскрыть неопределенность вида 0/0,заданную отношением двух многочленов, необходимо предварительно выделить критический множитель(т.е. множитель, равный нулю при предельном значении х), сократить на него, а затем перейти к пределу

В числителе и знаменателе вынести x в максимальной степени, если это возможно. Заметим, что , а , где c - любое число.

Правило 2.

Числитель и знаменатель разделить одновременно на , если это возможно. Необходимо иметь в виду, что , а , где c - число, отличное от нуля.

Правило 3.

При вычислении пределов от иррациональных выражений, не попадающих в предыдущие правила, следует избавиться от корней, входящих в неопределенность. Возможны следующие способы:

3.1. замена переменной , позволяющая извлечь корни, входящие в неопределенность;

3.2. дополнение до формулы, позволяющей возвести корень в соответствующую ему степень; здесь используются формулы: ; .

Пример 4.




<== предыдущая лекция | следующая лекция ==>
Алгоритм решения. | 

Дата добавления: 2015-10-01; просмотров: 272. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия