Студопедия — Активный раздаточный материал
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Активный раздаточный материал

Активный раздаточный материал

КАЗАХСКАЯ ГОЛОВНАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ

«Теплоснабжение I» Факультет общего строительства
3- кредита шестой семестр, 2015-16 учебный год
Лекция № 10. Оборудование тепловых пунктов Ассистент профессора Алиев Бахтияр Зияевич
Краткое содержание занятия [1] с.31-34; [2] с. 57-61; [3] с.27-24; [4] с.10-11; [5] с.115-118. Элеваторы, смесительные насосы. Конструкции и характеристики водоподогревателей, используемых для независимого присоединения потребителей к тепловым сетям. Контрольно-измерительные приборы и регуляторы. Приборы учета тепла.
Cабақтың қысқаша мазмұны  
Оборудование тепловых пунктов

Элеваторы и смесительные насосы.

Основные принципы работы элеватора. Схема элеваторного сме­сителя, графики давлений и скоростей в его проточной части показаны на рис. 3.1. Работает элеватор следующим образом. Высокотемпературная вода выходит из сопла 2 со скоростью w1 в виде струи, несущей большой запас кинетической энергии. Скорость создается в результате срабатывания в пределах сопла избыточного давления (по отношению к давлению в начале камеры смешения), равного сумме располагаемого перепада давления в тепловой сети перед элеватором и перепада давления во всасывающем коллекторе -+ Активная рабочая струя захватывает пассивные массы окружающей воды, передает им часть своей энергии и образовавшийся смешанный поток движется в проточной части струйного аппарата. В камере смешения в результате обмена импульсами происходит выравнивание поля скоростей потока и за счет высвобождающейся кинетической энергии растет его статическое давление. В конце камеры смешения статическое давление увеличивается на После камеры смешения поток поступает в диффузор, где тормозится и его статическое давление увеличивается на .

Рис. 3.1. Схема элеватора

/ — всасывающий коллектор; 2 — приемная камера сопло; 3 — камера смешения; 4 — диффузор.

 

Элеватор выполняет две функции: служит смесителем воды и побудителем циркуляции воды в местной системе. Элеваторные смесительные узлы были предложены проф. В. М. Чаплиным* еще в начале развития централизованного теплоснабжения в нашей стране и с тех пор получили широкое распространение в отечественной практике благодаря простоте устройства (отсутствию движущихся частей) и надежности в эксплуатации. Недостатками элеваторных смесительных узлов являются:

а) малый КПД (0,25—0,3), вследствие чего для создания заданной разности давлений после элеватора (в подающем и обратном трубопроводах местной системы) в трубопроводах теплосети до элеватора необходимо иметь значительно большую (в 8—10 раз) разницу давлений. Это приводит к необходимости увеличения мощности располагаемого у источника тепла циркуляционного насоса, за счет работы которого и обеспечивается подмешивание в элеваторе;

б) невозможность осуществления автономной циркуляции воды в местной системе отопления при аварийном прекращении циркуляции воды в тепловой сети, что при отрицательных наружных температурах ускоряет остывание отапливаемых помещений и способствует замерзанию воды в наиболее уязвимых местах местной системы (например, в лестничных клетках и т. п.);

в) постоянство коэффициента подмешивания u=Gnод/Gсети, т. е. постоянство соотношения между количеством подмешиваемой воды из обратного трубопровода Gnод и количеством сетевой воды, проходящей через сопло элеватора, Gсети, что жестко связывает между собой гидравлический и температурный режимы тепловой сети и местной системы отопления.

Последний недостаток элеваторов не позволяет с повышением наружной температуры уменьшать количество циркулирующей по тепловой сети воды с сохранением ее расчетной температуры, что уменьшило бы затраты электроэнергии на перемещение теплоносителя. При постоянном коэффициенте подмешивания всякое сокращение расхода сетевой воды через сопло элеватора приводит к пропорциональному сокращению расхода воды в местной системе отопления, а это вызывает ее разрегулировку, т. е. неравномерную теплоотдачу отдельных нагревательных приборов.

В тех случаях, когда по указанным выше причинам применение элеваторов невозможно (при малой разности давлений в трубах тепловой сети) или нерационально, в смесительных узлах применяют насосы. При индивидуальных абонентских вводах, располагаемых в самих зданиях, насосы в смесительных узлах должны быть бесшумными, но так как в больших количествах отечественная промышленность таких насосов еще не выпускает, то на практике смесительные узлы применяют только при выносных групповых вводах.

В последние годы внедряются в практику элеваторы «с регулируемым соплом», т. е. элеваторов с переменным выходным сечением сопла (рис. 3). Такие элеваторы позволяют в определенных пределах изменять коэффициент подмешивания, что расширяет область их применения по сравнению с элеваторами обычной конструкции.

 

 

Рис. 3 Схема элеватора с регулируемым соплом

/ — сопло; 2 — всасывающая камера; в — регулирующая игла; 4 — камера смешения; 5 — диффу­зор; 6'— выход смешанной воды; 7— вход подмешиваемой воды; 8 — шток регулирующий иглы; 9 — механизм для перемещения регулирующей иглы; 10 — вход высокотемпературной воды

 

Смесительные насосы. Смешение высокотемпературной воды с обратной водой системы отопления можно осуществлять не только в элеваторах, но и с помощью смесительных насосов. Смесительные насосные узлы устраивают вместо элеваторов, как правило, при недостаточных располагаемых перепадах давлений в точках присоединения абонентов к наружной тепловой сети. В ряде случаев с помощью насосов одновременно со смешением повышается давление в подающем трубопроводе после теплового пункта для залива системы отопления высокого здания или, наоборот, понижается давление в обратном трубопроводе до теплового пункта при высоком давлении в наружной тепловой сети.

Насосная схема присоединения системы отопления позволяет более точно, чем элеваторная, поддерживать необходимую температуру воздуха в отапливаемых, помещениях, так как в этом случае возможно более совершенное регулирование подачи тепла на отопление путем изменения коэффициента подмешивания.

Смесительный насос можно устанавливать на перемычке между подающей и обратной магистралями, на подающем трубопроводе местной системы отопления, на обратном трубопроводе местной системы отопления. Подача насоса, установленного на подающем или обратном трубопроводе местной системы отопления, равна расходу воды в системе отопления.

Смесительные насосы подбирают по заводским характеристикам. Насос должен обеспечивать заданные подачу и напор при наибольшем значении КПД.

В качестве смесительных насосов используют как радиальные (центробежные) насосы общепромышленного назначения (типа К, КМ, ЦНШ), так и радиальные насосы специальной конструкции, учитывающей особенности работы насоса в системе отопления.

Радиальные насосы типа К, КМ, ЦНШ, WILO, DAR наиболее часто используемые на тепловых пунктах, по напору и подаче обычно не подходят для системы отопления. В этом случае необходимо искусственно увеличивать сопротивление системы отопления путем установки диафрагмы или вставки малого диаметра, что приводит к увеличению мощности электродвигателя и перерасходу электроэнергии. Кроме того, корпус специальных циркуляционных насосов рассчитан на гидростатическое давление от 0,6 до 1 МПа, тогда как для насосов типа К и КМ максимально допустимое давление на входе 0,2 МПа, что ограничивает их применение в системах отопления зданий повышенной этажности.

Для циркуляции воды в системах отопления и горячего водоснабжения устанавливают по два одинаковых насоса, действующих попеременно: один работает, другой находится в резерве. Насосы оборудуют автоматикой включения резерва.

Для уменьшения передачи шума и вибрации от насосов, установленных на фундаментах, к трубопроводам и строительным конструкциям зданий на трубопроводах до и после насосов предусматривают виброизолирующие резиновые вставки длиной около 900 мм, фундаменты общепромышленных насосов оснащают виброизолирующими прокладками и опорами

Водоподогреватели

В тепловых пунктах устанавливают водоподогреватели различных типов и конструкций. В зависимости от вида греющей среды их делят на пароводяные и водоводяные. В первом случае греющей средой является водяной пар, во втором — высокотемпературная вода. Нагреваемой средой в обоих случаях является вода.

По конструктивным признакам водоподогреватели подразделяют на кожухотрубные и пластинчатые. В кожухотрубных водоподогревателях основными конструктивными элементами являются цилиндрический корпус и пучок гладких трубок, размещаемый внутри корпуса. Один из теплоносителей протекает внутри трубок, другой — в меж­трубном пространстве корпуса. Как внутри трубок, так и в межтрубном пространстве теплоносители движутся с определенными скоростями, обеспечивая активный теплообмен. Такие водоподогреватели получили название скоростных*

Скоростные водоводяные подогреватели, у которых греющая и нагреваемая вода движется навстречу, называют противоточными. Они эффективнее прямоточных, так как обеспечивают большую среднюю разность температур и позволяют нагревать воду до более высокой температуры. Для пароводяных скоростных подогревателей направление движения теплоносителей не имеет значения. Водоводяные и пароводяные скоростные подгреватели предназначены для систем отопления и горячего водоснабжения.

По ориентации оси корпуса скоростные пароводяные водоподогреватели могут быть горизонтальными и вертикальными. В тепловых пунктах жилых, общественных и промышленных зданий устанавливают горизонтальные водоподогреватели.

Иногда в тепловых пунктах устанавливают трубчатые теплообменники, в которых пучок трубок погружен в емкость, заполненную нагреваемой водой. Такие водоподогреватели, в отличие от скоростных, называют емкостными и используют в системах горячего водоснабжения с периодическим разбором воды.

Основным конструктивным элементом пластинчатых водоподогревателей является гофрированная пластина. Пластины располагают параллельно друг, другу, между поверхностями двух смежных пластин создаются небольшие зазоры щелевидной формы, по которым движутся потоки греющей и нагреваемой сред.

Водоводяные скоростные подогреватели выпускают в настоящее время разъемными. Разъемное исполнение секций позволяет собирать на месте подогреватели с различным числом однотипных секций.

На рис. 3.2 изображен секционный скоростной водоводяной подогреватель. Основным элементом подогревателя является корпус из стальной бесшовной трубы. Внутри корпуса расположены трубки из латуни диаметром 16X1 мм, ввальцованные двумя. концами в глухие фланцы. Латунь имеет высокую теплопроводность — около 135 Вт/(м-°С), следовательно, термическое сопротивление стенки латунной трубки, имеющей толщину 1 мм, ничтожно.

 

 

 

Рис. 4. Водоводяной скоростной секционный подогреватель по ОСТ 34-588-68

 

 

Корпусы теплообменников длиной 2 и 4 м имеют наружные диаметры от 57 до 530 мм, число трубок от 4 до 450. Подогреватели рассчитаны на рабочее давление 1 МПа (10 кгс/см2). В подогревателях, предназначенных для горячего водоснабжения, греющую воду направляют в межтрубное пространство, нагреваемую — в трубки. Этим достигается, во-первых, выравнивание скоростей движения сетевой и водопроводной воды, так как расход сетевой воды обычно больше, чем водопроводной. Во-вторых, осаждающуюся накипь легче удалить с внутренней поверхности трубок, чем с наружной. При таком порядке движения воды стальной корпус имеет более высокую температуру, чем латунные трубки, следовательно, нет необходимости в установке линзового компенсатора на корпусе подогревателя

В настоящее время промышленность выпускает пароводяные подогреватели двух- и четырехходовые с длиной трубок 2 и 3 м. Площадь поверхности нагрева таких подогревателей изменяется от 6,3 до 224 м2, тепло производительность — от 0,67 до 32 МВт. Трубная система подогревателей выполнена из латунных трубок диаметром 16X1 мм. Из условия прочности предельное давление воды 1,6 МПа, пара 1 МПа. Давление пара в подогревателе должно быть на 0,1—0,2 МПа меньше давления воды во избежание попадания пара в трубки подогревателя при их повреждении и вскипания воды.

Пар из парового коллектора поступает в межтрубное пространство подогревателя и конденсируется на" поверхности трубок, имеющих более низкую температуру. Конденсат под действием силы тяжести стекает вниз.

В системах горячего водоснабжения с периодическим разбором воды (например, душевые установки промышленных предприятий) устанавливают емкостные пароводяные горизонтальные водоподогреватели. Подогреватель состоит из стального корпуса и змеевика, расположенного внутри корпуса. Пар подается в змеевик, холодная вода поступает в нижнюю часть корпуса подогревателя и вытесняет нагретую воду через патрубок, расположенный в верхней части корпуса. При этом не происходит перемешивания холодной и нагретой воды, так как холодная вода, имеющая большую плотность, остается внизу,а по мере нагревания она поднимается вверх. Теплопроводность в массе воды затруднена. Рабочая емкость водоподогревателя определяется объемом воды, находящейся выше змеевика. Выпускаемые промышленностью емкостные водоподогреватели имеют вместимость от 400 до 4000 л и площадь поверхности нагрева от 0,5 до 4,7 м2. Площадь поверхности змеевика обеспечивает нагрев рабочего объема воды от 5 до 75°С в течение 1 ч при рабочем давлении пара в змеевике 0,485 МПа. Наличие значительного объема воды в подогревателе позволяет использовать его как бак-аккумулятор. Отсутствие естественной и вынужденной конвекции в массе воды затрудняет теплообмен между паром и водой. Коэффициент теплопередачи в емкостных пароводяных подогревателях значительно ниже, чем в скоростных.

В скоростных и емкостных пароводяных подогревателях происходит процесс конденсации водяного пара. Тепло, выделяющееся при конденсации, идет на нагрев воды. Использование тепла будет неполным, если из подогревателя выйдет пар, не успевший сконденсироваться. Во избежание потерь тепла на выходе из пароводяных подог­ревателей устанавливают конденсатоотводчики, используемые, также для дренажа паропроводов и паровых коллекторов.

СРС. [1] с.50-51; [2] с.80; [3] с.42 Схемы паровых систем. Основные характеристики. Реферат1-2стр.

СРСП. Выполнение схемы присоединения системы горячего водоснабжения к тепловым сетям - выполнение графической части курсовой работы.

 

Контрольные вопросы для письменного экзамена

 

1.

2.

3.




<== предыдущая лекция | следующая лекция ==>
Кинолента видений | Расчет времени эвакуации людей с 16го этажа

Дата добавления: 2015-10-02; просмотров: 520. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия