Интерференция света – это явление наложения когерентных волн
- свойственно волнам любой природы (механическим, электромагнитным и т.д.
Когерентные волны - это волны, испускаемые источниками, имеющими одинаковую частоту и постоянную разность фаз.
При наложении когерентных волн в какой-либо точке пространства амплитуда колебаний (смещения) этой точки будет зависеть от разности расстояний от источников до рассматриваемой точки. Эта разность расстояний называется разностью хода.
При наложении когерентных волн возможны два предельных случая:
Условие максимума:
Разность хода волн равна целому числу длин волн (иначе четному числу длин полуволн).
где
В этом случае волны в рассматриваемой точке приходят с одинаковыми фазами и усиливают друг друга – амплитуда колебаний этой точки максимальна и равна удвоенной амплитуде.
Условие минимума:
Разность хода волн равна нечетному числу длин полуволн.
где
Волны приходят в рассматриваемую точку в противофазе и гасят друг друга.
Амплитуда колебаний данной точки равна нулю.
В результате наложения когерентных волн (интерференции волн) образуется интерференционная картина.
Дифракция света
– это отклонение световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий.
Явление дифракции света доказывает, что свет обладает волновыми свойствами.
Для наблюдения дифракции можно:
- пропустить свет от источника через очень малое отверстие или расположить экран на большом расстоянии от отверстия. Тогда на экране наблюдается сложная картина из светлых и темных концентрических колец.
- или направить свет на тонкую проволоку, тогда на экране будут наблюдаться светлые и темные полосы, а в случае белого света – радужная полоса.
- наблюдение дифракции света на малом отверстии.
Объяснение картины на экране:
Французский физик О. Френель объяснил наличие полос на экране тем, что световые волны, приходящие из разных точек в одну точку на экране, интерферируют между собой.
Принцип Гюйгенса – Френеля
Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой.
Амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками.
Принцип Гюйгенса-Френеля дает объяснение явлению дифракции:
1. вторичные волны, исходя из точек одного и того же волнового фронта (волновой фронт – это множество точек, до которых дошло колебание в данный момент времени), когерентны, т.к. все точки фронта колеблются с одной и той же частотой и в одной и той же фазе;
2. вторичные волны, являясь когерентными, интерферируют.
Явление дифракции накладывает ограничения на применение законов геометрической оптики:
Закон прямолинейного распространения света, законы отражения и преломления света выполняются достаточно точно только, если размеры препятствий много больше длины световой волны.
Дифракция накладывает предел на разрешающую способность оптических приборов:
- в микроскопе при наблюдении очень мелких предметов изображение получается размытым
- в телескопе при наблюдении звезд вместо изображения точки получаем систему светлых и темных полос.
Дифракционная решетка
- это оптический прибор для измерения длины световой волны.
Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками.
Если на решетку падает монохроматическая волна. то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее – экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов.
Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладыается целое число длин волн, то волны от всех щелей будут усиливать друг друга. При использовании белого света все максимумы (кроме центрального) имеют радужную окраску.
Итак, условие максимума:
где k – порядок (или номер) дифракционного спектра
Чем больше штрихов нанесено на решетке, тем дальше друг от друга находятся дифракционные спектры и тем меньше ширина каждой линии на экране, поэтому максимумы видны в виде раздельных линий, т.е. разрешающая сила решетки увеличивается.
Точность измерения длины волны тем больше, чем больше штрихов приходится на единицу длины решетки.
Поляризация света
Поляризация волн
Свойство поперечных волн – поляризация.
Поляризованной волной называется такая поперечная волна, в которой колебания всех частиц происходят в одной плоскости.
Такую волну можно получить с помощью резинового шнура, если на его пути поставить преграду с тонкой щелью. Щель пропустит только те колебания, которые происходят вдоль нее.
Устройство, выделяющее колебания, происходящие в одной плоскости, называется поляризатором.
Устройство, позволяющее определить плоскость поляризации (вторая щель) называется анализатором.
Поляризация света
Опыт с турмалином – доказательство поперечности световых волн.
Кристалл турмалина – это прозрачный, зеленого цвета минерал, обладающий осью симметрии.
В луче света от обычного источника присутствуют колебания векторов напряженности электрического поля Е и магнитной индукции В всевозможных направлений, перпендикулярных направлению распространения световой волны. Такая волна называется естественной волной.
При прохождении через кристалл турмалина свет поляризуется.
У поляризованного света колебания вектора напряженности Е происходят только в одной плоскости, которая совпадает с осью симметрии кристалла.
Поляризация света после прохождения турмалина обнаруживается, если за первым кристаллом (поляризатором) поставить второй кристалл турмалина (анализатор).
При одинаково направленных осях двух кристаллов световой луч пройдет через оба и лишь чуть ослабнет за счет частичного поглощения света кристаллами.
Схема действия поляризатора и стоящего за ним анализатора:
Если второй кристалл начать поворачивать, т.е. смещать положение оси симметрии второго кристалла относительно первого, то луч будет постепенно гаснуть и погаснет совершенно, когда положение осей симметрии обоих кристаллов станет взаимно перпендикулярным.
Вывод:
Свет- это поперечная волна.
Применение поляризованного света:
- плавная регулировка освещенности с помощью двух поляроидов
- для гашения бликов при фотографировании (блики гасят, поместив междуисточником света и отражающей поверхностью поляроид)
- для устранения слепящего действия фар встречных машин.