Студопедия — Классификации волн Править
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классификации волн Править






Имеется множество классификаций волн, различающиеся по своей физической природе, по конкретному механизму распространения, по среде распространения и т.п.

Волны можно классифицировать:

  • Океанские поверхностные волны, которые являются волнениями, которые образуются посредством воды;
  • Электромагнитные волны (Радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгены, и гамма-лучи, которые составляют электромагнитную радиацию), которые могут перемещаться без среды, в вакууме со скоростью света, равной 299 792 458 м\с в вакууме;
  • Звук — механическая волна, которая образуется в газах, жидкости, в средах с твердыми частицами и плазме;
  • Волны движения, то есть, образование различных потоков (волн) автомашин, и др., которые можгут быть смоделированы как кинематические волны, что впервые представлено сэром М. J. Lighthill[3];
  • Сейсмические волны в землетрясениях, из которых есть три типа, названные S, P, и L;
  • Гравитационная волна — гравитационное излучение, излучение гравитационных волн, или волн тяготения, неравномерно движущимися массами (телами).[3] Или гравитационная волна — возмущение гравитационного поля, порождающего изменение формы («ряби») пространства-времени, распространяющаяся предположиткльно со скоростью света.
  • Волны гравитации - волны, произведенные в жидкой среде или в интерфейсе между сопряжениями двух элементов (СМИ) (например, атмосфера и океан), которые могут быть восстановлены силами грвитации или состоянием плавучести.
  • Инерционные волны, которые происходят во вращающихся жидкостях и восстанавливаются эффектом Coriolis;
  • Волны в плазме.

По отношению к направлению колебаний частиц среды, в которой распространяется волна, выделяют:

  • продольные волны (волны сжатия, P-волны) — волна распространяется параллельно колебаниям частиц среды (звук);
  • поперечные волны (волны сдвига, S-волны) — частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);
  • волны смешанного типа.
По виду фронта волны (поверхности равных фаз):
  • плоская волна — плоскости фаз перпендикулярны направлению распространения волны;
  • сферическая волна — поверхностью фаз является сфера;
  • цилиндрическая волна — поверхность фаз напоминает цилиндр.
Продольные волны: Поперечные волны:
а) плоская; Добавил Moisey а) плоская; Добавил Moisey
б) сферическая. Добавил Moisey б) сферическая. Добавил Moisey

Рис.1,*A = в глубоководном месте. *B = в мелкой воде. Краткое движение поверхностной частицы становится более плоским с уменьшающейся глубиной. *1 = Прогрессия волны *2 = Гребень *3 = Корыто

Добавил Moisey

На Рис.1 показаны периодические волны, которые характеризуются гребнями (максимумы) и впадинами (минимумами), и могут обычно категоризироваться как или продольные или поперечные.

  • Поперечные волны - волны с напрвлением колебаний, перпендикулярным к вектору распространения волны; примером служат волны в области электромагнитных волн. *Продольные волны - те, крторые имеют колебания, параллельные вектору распространения волны; например, большинство звуковых волн.

Когда объект подпрыгивает на ряби в водоёме, то вектор движения точек волны происходит по орбитальной траектории. Появляющаяся рябь — не простые поперечные синусоидальные волны.

Все волны имеют общее поведение со множеством стандартных ситуаций.

По демонстрируемым волнами физическим проявлениям их можно разделить на:

  • линейные волны — волны с небольшой амплитудой, свойства которых описываются простыми линейными зависимостями;
  • нелинейные волны — волны с большими амплитудами, что приводит к возникновению совершенно новых эффектов и существенно изменяет характер уже известных явлений;
  • солитоны (уединённые волны);
  • ударные волны или нормальные разрывы.

По постоянству во времени различают:

  • одиночная волна — короткое одиночное возмущение (солитоны);
  • волновой пакет — это ряд возмущений, ограниченных во времени с перерывами между ними. Одно беспрерывное возмущение такого ряда называется цуг волн. В теории волновой пакет описывается как сумма всевозможных плоских волн, взятых с определёнными весами. В случае нелинейных волн, форма огибающей волнового пакета эволюционирует с течением времени;
  • Подобно сложным колебаниям, волновые цуги и негармонические волны могут быть представлены в виде суммы (суперпозиции) синусоидальных волн разных частот. Когда фазовые скорости всех этих волн одинаковы, то вся их группа (волновой пакет) движется с одной скоростью.
  • Если же фазовая скорость волны зависит от её частоты w, наблюдается дисперсия – волны различных частот идут с разной скоростью. Нормальная, или отрицательная дисперсия тем больше, чем выше частота волны. За счёт дисперсии, например, луч белого света в призме разлагается в спектр, в каплях воды – в радугу. Волновой пакет, который можно представить как набор гармонических волн, лежащих в диапазоне w0 ± Dw, из-за дисперсии расплывается. Его форма – огибающая амплитуд компонент цуга – искажается, но перемещается в пространстве со скоростью vгр, называемой групповой скоростью. Если при распространении волнового пакета максимумы волн, его составляющих, движутся быстрее огибающей, фазовая скорость сигнала выше групповой: сф > vгр. При этом в хвостовой части пакета за счёт сложения волн возникают все новые максимумы, которые передвигаются вперёд и пропадают в его головной части. Примером нормальной дисперсии служат среды, прозрачные для света – стёкла и жидкости.
  • В ряде случаев наблюдается также аномальная (положительная) дисперсия среды, при которой групповая скорость превышает фазовую: vгр > сф, причём возможна ситуация, когда эти скорости направлены в противоположные стороны. Максимумы волн появляются в головной части пакета, перемещаются назад и исчезают в его хвосте.

По постоянству во времени различают:

  • одиночная волна — короткое одиночное возмущение (солитоны);
  • волновой пакет — это ряд возмущений, ограниченных во времени с перерывами между ними. Одно беспрерывное возмущение такого ряда называется цуг волн. В теории волновой пакет описывается как сумма всевозможных плоских волн, взятых с определёнными весами. В случае нелинейных волн, форма огибающей волнового пакета эволюционирует с течением времени;
  • Подобно сложным колебаниям, волновые цуги и негармонические волны могут быть представлены в виде суммы (суперпозиции) синусоидальных волн разных частот. Когда фазовые скорости всех этих волн одинаковы, то вся их группа (волновой пакет) движется с одной скоростью.
  • Если же фазовая скорость волны зависит от её частоты w, наблюдается дисперсия – волны различных частот идут с разной скоростью. Нормальная, или отрицательная дисперсия тем больше, чем выше частота волны. За счёт дисперсии, например, луч белого света в призме разлагается в спектр, в каплях воды – в радугу. Волновой пакет, который можно представить как набор гармонических волн, лежащих в диапазоне w0 ± Dw, из-за дисперсии расплывается. Его форма – огибающая амплитуд компонент цуга – искажается, но перемещается в пространстве со скоростью vгр, называемой групповой скоростью. Если при распространении волнового пакета максимумы волн, его составляющих, движутся быстрее огибающей, фазовая скорость сигнала выше групповой: сф > vгр. При этом в хвостовой части пакета за счёт сложения волн возникают все новые максимумы, которые передвигаются вперёд и пропадают в его головной части. Примером нормальной дисперсии служат среды, прозрачные для света – стёкла и жидкости.
  • В ряде случаев наблюдается также аномальная (положительная) дисперсия среды, при которой групповая скорость превышает фазовую: vгр > сф, причём возможна ситуация, когда эти скорости направлены в противоположные стороны. Максимумы волн появляются в головной части пакета, перемещаются назад и исчезают в его хвосте.

· Формула Томсона.

· Уравнение описывающее свободные электромагнитные колебания, имеет вид:

· q" = -v02 q

· Коэффициент пропорциональности в уравнении q" = - q / LC представляет квадрат циклической частоты колебаний заряда v02 = 1 / (LC)½. Период свободных колебаний в контуре равен:

· T=2p/w0=2p(LG)½

· Формала называется формулой Томсона в честь английского физика, который её впервые вывел.

 







Дата добавления: 2015-10-02; просмотров: 465. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия