Классификации волн Править
Имеется множество классификаций волн, различающиеся по своей физической природе, по конкретному механизму распространения, по среде распространения и т.п.
Волны можно классифицировать:
- Океанские поверхностные волны, которые являются волнениями, которые образуются посредством воды;
- Электромагнитные волны (Радиоволны, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгены, и гамма-лучи, которые составляют электромагнитную радиацию), которые могут перемещаться без среды, в вакууме со скоростью света, равной 299 792 458 м\с в вакууме;
- Звук — механическая волна, которая образуется в газах, жидкости, в средах с твердыми частицами и плазме;
- Волны движения, то есть, образование различных потоков (волн) автомашин, и др., которые можгут быть смоделированы как кинематические волны, что впервые представлено сэром М. J. Lighthill[3];
- Сейсмические волны в землетрясениях, из которых есть три типа, названные S, P, и L;
- Гравитационная волна — гравитационное излучение, излучение гравитационных волн, или волн тяготения, неравномерно движущимися массами (телами).[3] Или гравитационная волна — возмущение гравитационного поля, порождающего изменение формы («ряби») пространства-времени, распространяющаяся предположиткльно со скоростью света.
- Волны гравитации - волны, произведенные в жидкой среде или в интерфейсе между сопряжениями двух элементов (СМИ) (например, атмосфера и океан), которые могут быть восстановлены силами грвитации или состоянием плавучести.
- Инерционные волны, которые происходят во вращающихся жидкостях и восстанавливаются эффектом Coriolis;
- Волны в плазме.
По отношению к направлению колебаний частиц среды, в которой распространяется волна, выделяют:

- продольные волны (волны сжатия, P-волны) — волна распространяется параллельно колебаниям частиц среды (звук);
- поперечные волны (волны сдвига, S-волны) — частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);
- волны смешанного типа.
По виду фронта волны (поверхности равных фаз):
- плоская волна — плоскости фаз перпендикулярны направлению распространения волны;
- сферическая волна — поверхностью фаз является сфера;
- цилиндрическая волна — поверхность фаз напоминает цилиндр.
|
Продольные волны:
| Поперечные волны:
| а) плоская;
Добавил Moisey
| а) плоская;
Добавил Moisey
| б) сферическая.
Добавил Moisey
| б) сферическая.
Добавил Moisey
| | Рис.1,*A = в глубоководном месте. *B = в мелкой воде. Краткое движение поверхностной частицы становится более плоским с уменьшающейся глубиной. *1 = Прогрессия волны *2 = Гребень *3 = Корыто
Добавил Moisey
На Рис.1 показаны периодические волны, которые характеризуются гребнями (максимумы) и впадинами (минимумами), и могут обычно категоризироваться как или продольные или поперечные.
- Поперечные волны - волны с напрвлением колебаний, перпендикулярным к вектору распространения волны; примером служат волны в области электромагнитных волн. *Продольные волны - те, крторые имеют колебания, параллельные вектору распространения волны; например, большинство звуковых волн.
Когда объект подпрыгивает на ряби в водоёме, то вектор движения точек волны происходит по орбитальной траектории. Появляющаяся рябь — не простые поперечные синусоидальные волны.
Все волны имеют общее поведение со множеством стандартных ситуаций.
По демонстрируемым волнами физическим проявлениям их можно разделить на:
- линейные волны — волны с небольшой амплитудой, свойства которых описываются простыми линейными зависимостями;
- нелинейные волны — волны с большими амплитудами, что приводит к возникновению совершенно новых эффектов и существенно изменяет характер уже известных явлений;
- солитоны (уединённые волны);
- ударные волны или нормальные разрывы.
По постоянству во времени различают:
- одиночная волна — короткое одиночное возмущение (солитоны);
- волновой пакет — это ряд возмущений, ограниченных во времени с перерывами между ними. Одно беспрерывное возмущение такого ряда называется цуг волн. В теории волновой пакет описывается как сумма всевозможных плоских волн, взятых с определёнными весами. В случае нелинейных волн, форма огибающей волнового пакета эволюционирует с течением времени;
- Подобно сложным колебаниям, волновые цуги и негармонические волны могут быть представлены в виде суммы (суперпозиции) синусоидальных волн разных частот. Когда фазовые скорости всех этих волн одинаковы, то вся их группа (волновой пакет) движется с одной скоростью.
- Если же фазовая скорость волны зависит от её частоты w, наблюдается дисперсия – волны различных частот идут с разной скоростью. Нормальная, или отрицательная дисперсия тем больше, чем выше частота волны. За счёт дисперсии, например, луч белого света в призме разлагается в спектр, в каплях воды – в радугу. Волновой пакет, который можно представить как набор гармонических волн, лежащих в диапазоне w0 ± Dw, из-за дисперсии расплывается. Его форма – огибающая амплитуд компонент цуга – искажается, но перемещается в пространстве со скоростью vгр, называемой групповой скоростью. Если при распространении волнового пакета максимумы волн, его составляющих, движутся быстрее огибающей, фазовая скорость сигнала выше групповой: сф > vгр. При этом в хвостовой части пакета за счёт сложения волн возникают все новые максимумы, которые передвигаются вперёд и пропадают в его головной части. Примером нормальной дисперсии служат среды, прозрачные для света – стёкла и жидкости.
- В ряде случаев наблюдается также аномальная (положительная) дисперсия среды, при которой групповая скорость превышает фазовую: vгр > сф, причём возможна ситуация, когда эти скорости направлены в противоположные стороны. Максимумы волн появляются в головной части пакета, перемещаются назад и исчезают в его хвосте.
По постоянству во времени различают:
- одиночная волна — короткое одиночное возмущение (солитоны);
- волновой пакет — это ряд возмущений, ограниченных во времени с перерывами между ними. Одно беспрерывное возмущение такого ряда называется цуг волн. В теории волновой пакет описывается как сумма всевозможных плоских волн, взятых с определёнными весами. В случае нелинейных волн, форма огибающей волнового пакета эволюционирует с течением времени;
- Подобно сложным колебаниям, волновые цуги и негармонические волны могут быть представлены в виде суммы (суперпозиции) синусоидальных волн разных частот. Когда фазовые скорости всех этих волн одинаковы, то вся их группа (волновой пакет) движется с одной скоростью.
- Если же фазовая скорость волны зависит от её частоты w, наблюдается дисперсия – волны различных частот идут с разной скоростью. Нормальная, или отрицательная дисперсия тем больше, чем выше частота волны. За счёт дисперсии, например, луч белого света в призме разлагается в спектр, в каплях воды – в радугу. Волновой пакет, который можно представить как набор гармонических волн, лежащих в диапазоне w0 ± Dw, из-за дисперсии расплывается. Его форма – огибающая амплитуд компонент цуга – искажается, но перемещается в пространстве со скоростью vгр, называемой групповой скоростью. Если при распространении волнового пакета максимумы волн, его составляющих, движутся быстрее огибающей, фазовая скорость сигнала выше групповой: сф > vгр. При этом в хвостовой части пакета за счёт сложения волн возникают все новые максимумы, которые передвигаются вперёд и пропадают в его головной части. Примером нормальной дисперсии служат среды, прозрачные для света – стёкла и жидкости.
- В ряде случаев наблюдается также аномальная (положительная) дисперсия среды, при которой групповая скорость превышает фазовую: vгр > сф, причём возможна ситуация, когда эти скорости направлены в противоположные стороны. Максимумы волн появляются в головной части пакета, перемещаются назад и исчезают в его хвосте.
· Формула Томсона.
· Уравнение описывающее свободные электромагнитные колебания, имеет вид:
· q" = -v02 q
· Коэффициент пропорциональности в уравнении q" = - q / LC представляет квадрат циклической частоты колебаний заряда v02 = 1 / (LC)½. Период свободных колебаний в контуре равен:
· T=2p/w0=2p(LG)½
· Формала называется формулой Томсона в честь английского физика, который её впервые вывел.
Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...
|
Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...
|
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при которых тело находится под действием заданной системы сил...
|
Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...
|
Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...
Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...
Репродуктивное здоровье, как составляющая часть здоровья человека и общества
Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...
|
Образование соседних чисел Фрагмент:
Программная задача: показать образование числа 4 и числа 3 друг из друга...
Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...
Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последующая жизнь проходит под знаком этой травмы...
|
|