История фракталов. Я только что сделала программу Красный пиджак
Я только что сделала программу Красный пиджак. Мне сказали, ято надо ходить в красном пиджаке и проводить классы. Пришла я в красном пиджаке, туфли с собой, на индивидуальную консультацию. А до этого слушала тренинг, где советовали: сделали предложение, нарисуйте себе большую жирную галочку: СТОП! МОЛЧАТЬ! Провела консультацию, предлагаю наборы – 3 шт., спрашиваю: - Чем бы вы хотели начать пользоваться уже сегодня?
Вопросы: - У нее каталог в руках или эти наборы прописаны? - Я давала открытки и мы писали: система по по уходу за лицом, цена такая-то. Спрашиваю: «Что из этого понравилось больше всего? Обведите в кружочек». - Зачем в кружочек? - Чтобы клиентка не забыла, что ей понравилось. Листочек останется у нее. Замолчала и сижу молчу, улыбаюсь, смотрю на нее. Сидели 15 минут. Вывод:клиентке надо время, чтобы подумать, где она возьмет деньги. Не надо в это время ничего говорить, не сбивайте клиентку с мысли.
Напоминание: Предлагайте уход за руками, уход за губами мужчинам, которые ухаживают за вашей машиной. Они это оценят!
История фракталов Первым фракталом считается классическое множество Кантора или пыль Кантора, названное по имени Георга Кантора, который описал его в 1883 году. Существование пыли кантора отмечалось до этого Генри Смитом в 1875 году или ещё ранее. Это множество известно как пример множества нулевой меры Лебега, чья мощность равна мощности континуума c. Построение классической пыли Кантора начинается с выбрасыванием средней трети (не включая концы) единичного отрезка. То есть исходное множество есть отрезок [0,1], и первый шаг состоит в удалении открытого интервала (1/3, 2/3). На следующем и всех остальных шагах выкидываем среднюю треть (не включая концы) всех отрезков текущего уровня. Таким образом, получается последовательность множеств рисунков: Пеано нарисовал особый вид линии. Для ее рисования Пеано использовал следующий алгоритм. На первом шаге он брал прямую линию и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длинна исходной линии (Часть 1 и 2 рисунка 1). Далее он делал то же самое с каждым отрезком получившейся линии. И так до бесконечности. Ее уникальность в том, что она заполняет всю плоскость. Доказано, что для каждой точки на плоскости можно найти точку, принадлежащую линии Пеано. Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности. Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из точек (размерность 0). А кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость. Во многих других областях науки появлялись задачи, решение которых приводило к странным результатам, на подобие описанных выше (Броуновское движение, цены на акции). Вплоть до 20 века шло накопление данных о таких странных объектах, без какой либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Р. Мандельброт (Benoit Mandelbrot), математик из Исследовательского центра им. Томаса Уотстона при IBM - отец современной фрактальной геометрии, который и предложил термин "фрактал" для описания объектов, структура которых повторяется при переходе к все более мелким масштабам. Работая в IBM математическим аналитиком, он изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Постепенно сопоставив факты, он пришел к открытию нового направления в математике - фрактальной геометрии. Что же такое фрактал. Сам Мандельброт вывел слово fractal от латинского слова fractus, что означает разбитый (поделенный на части). И одно из определений фрактала - это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого (по крайней мере, приблизительно). Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б. Мандельброта "The Fractal Geometry of Nature" ("Фрактальная геометрия природы") ставший классическим - "Какова длина берега Британии?". Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым мы будем пользоваться. Померив берег с помощью километровой линейки мы получим какую-то длину. Однако мы пропустим много небольших заливчиков и полуостровков, которые по размеру намного меньше нашей линейки. Уменьшив размер линейки до, скажем, 1 метра - мы учтем эти детали ландшафта, и, соответственно длина берега станет больше. Пойдем дальше и измерим длину берега с помощью миллиметровой линейки, мы тут учтем детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно - длина берега Британии бесконечна.
|