Этот класс канцерогенов является достаточно хорошо изученным. Некоторые структуры даны на рис. 22. Токсичность ариламинов в основном обусловлена их гидроксилированием. При естественном уровне ариламинов их гидроксилирование не представляет угрозы для организма, тогда как люди, получающие дозы ариламина, превышающие критический уровень (несколько грамм), ежедневно составляют группу риска с возможностью появления рака почек через несколько лет. Первое прямое доказательство, что метаболиты канцерогена являются более канцерогенными, чем исходная молекула, было продемонстрировано учеными Миллер на примере 2-флуоренилацетамида. Они показали, что N-гидроксилированный метаболит этого канцерогена обладал гораздо более высоким канцерогенным потенциалом, чем 2-флуоренилацетамид и гидроксилированные по кольцу метаболиты. К настоящему времени общепринято считать, что N-гидроксилирование широкого круга канцерогенных N-замещенных ароматических соединений является путем активации этих соединений. Среди этого класса соединений достаточно хорошо изучен метаболизм канцерогенного ацетиламинофлуорена (рис. 23). Канцерогенный эффект этого соединения осуществляется через образование реактивного метаболита N-гидрокси-ацетиламинофлуорена, тогда как окисление по углеродным атомам кольца представляет путь детоксификации. Исследования канцерогенности других ароматических аминов, таких как 4-аминобифенил, 2-нафтиламин и бензидин показали, что их метаболиты, образующиеся в результате окисления цитохромом Р450 1А, могут взаимодействовать с ДНК. N-гидроксилирование азобензолов осуществляется цитохромом Р450 CYP1А2, который конститутивно экспрессируется в печени, являющейся органом-мишенью для этого класса канцерогенов Рис. 23. Метаболизм 2-ацетиламинофлуорена