Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение в полных дифференциалах.





Определение. Уравнение

(1)

называется уравнением в полных дифференциалах, если и - непрерывные, дифференцируемые функции, для которых выполняется соотношение

, (2)

причем и непрерывны в некоторой области.

При выполнении условия (2) левая часть уравнения (1) представляет полный дифференциал некоторой функции .

Уравнение (1) можно записать в виде

(3)

Общее решение этого уравнения будет

,

где С – произвольная постоянная.

Полный дифференциал некоторой функции выражается формулой

,

т.е. .

Тогда , (4)

Дифференцируя 1 ое соотношение по у, а 2 ое по х получим

, .

Т.к. , то ,

т.е. равенство (2) является необходимым условием для того, чтобы левая часть уравнения (1) была полным дифференциалом некоторой функции . Покажем, что это условие является и достаточным, т.е. при выполнении условия (2) левая часть уравнения (1) есть полный дифференциал некоторой функции .

Из соотношения находим , где - область решения.

При интегрировании по х, у – считали постоянной, поэтому она входит в состав произвольной постоянной. Подберем функцию так, чтобы выполнялось второе условие равенства (4). Продифференцируем последнее равенство по у

Учитывая, что , , можем написать

или , откуда или .

Итак, будет иметь вид

Точка области, в которой существует решение уравнения (1).

Общее решение уравнения (1) запишем так:

Пример.

Условие выполняется

Общее решение

 







Дата добавления: 2015-10-12; просмотров: 366. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия