Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства конъюнкции, дизъюнкции и отрицания. (указываются достоинства, недостатки отчета, вопросы)





(указываются достоинства, недостатки отчета, вопросы)

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Результат рецензирования ___________________________

(отчет допущен к защите; не допущен к защите)

 

Подпись рецензента __________________________________

 

«____» _________________________ 2012 г.

 

Отметка о прохождении практики _____________________

 

 

Отметка о защите отчета ______________________________

 

 

«____» _______________________ 2012 г.

 

(подписи преподавателей, принимающих зачет)

Свойства конъюнкции, дизъюнкции и отрицания

Особая роль двух функций (из этих трех) определяется тем обстоятельством, что определение этих функций легко может быть перенесено на любое число переменных:

Конъюнкцией n переменных f (x 1, x 2,…, xn) = x 1 x 2 …xn называется функция, которая принимает значение1, если и только если все переменные равны1(и, значит, равна 0, если хотя бы одна из этих переменных равна 0).

Дизъюнкцией n переменных f (x 1, x 2, , xn) = x x … Ú xn называется такая функция, которая равна 0 если и только если все переменные равны 0 (и, значит, равна 1 тогда и только тогда, когда хотя бы одна переменная равна 1).

Из этих определений видно, что конъюнкция и дизъюнкция коммутативны, т. е. обе функции не зависят от порядка переменных.

Будем обозначать через (x 1, x 2, , xn)новую функцию, которая на наборе переменных x 1, x 2, …, xn принимает значение, противоположное f (x 1, x 2, …, xn).

Заметим, что в перечисленных далее свойствах в роли x, y, z может выступать любая логическая функция. Все свойства легко могут быть доказаны из приведенных выше определений этих функций.

1. Универсальные границы:

xÚ1 = 1; xÚ0 = х; х 1 = х; х 0 = 0.

2. Ассоциативность конъюнкции и дизъюнкции:

x (yz) = (xy) z; x Ú(y Ú z) = (x Ú yz.

Это свойство означает, что в конъюнкции или дизъюнкции нескольких переменных можно как угодно расставлять скобки (а значит, можно вообще их не ставить).

3. Поглощение (“целое поглощает часть”):

х Ú ху = х (1Ú у) = х.

4. Два распределительных закона:

х (y Ú z) = x y Ú x z; х Ú(y z) = (x Ú y)(x Ú z),

оба свойства могут быть доказаны простым рассуждением (например, если х = 0, тогда по свойству 1 справа выражение равно 0 и слева тоже 0, если х = 1, то справа стоит y Ú z и слева будет то же самое).

5. Правила де Моргана:

оба эти правила обобщаются на любое число переменных:

6. Правило Блейка:

Пусть К 1 и К 2 – какие-то логические функции, тогда

что легко доказывается справа налево:

Следствием правила Блейка являются два правила обобщенного поглощения:

Заметим, что правила Блейка и следствия из него часто используются для упрощения дизъюнкции (см. разд. 5)

Замечание. Конъюнкция, дизъюнкция, отрицание были определены для объектов, принимающих лишь два значения 0 и 1. Однако бывают случаи, когда можно ввести такие операции для некоторых других объектов (эти операции также называют иногда конъюнкцией, дизъюнкцией и отрицанием), для которых также выполнены свойства 1–6. В этом случае говорят, что на этих объектах введена булева алгебра.

Например, пусть W – некоторое множество точек (или элементарных событий в теории вероятности), Â – множество подмножеств из W. Если A, B принадлежат Â, то можно ввести сумму множеств (дизъюнкцию) A + B = A Ú B (равную объединению точек из А и В), произведение множеств (конъюнкцию) АВ = А Ù В (равное набору точек, входящих и в А, и в B одновременно) и дополнение (отрицание А), т. е. – множество точек из W, не входящих в А. Тогда для этих операций (и это легко проверить) будут выполнены свойства 1–6. Таким образом, множество всех подмножеств из W является булевой алгеброй.







Дата добавления: 2015-10-12; просмотров: 406. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия