Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глутаминовая кислота (глутамат)





Исторически сложилось так, что первыми открытыми медиаторами стали ацетилхолин и моноамины. Это обусловлено их широким распространением в периферической нервной системе (по крайней мере, в случае ацетилхолина и норадреналина). Однако далеко не они являются наиболее часто встречающимися медиаторами ЦНС. Более 80% нервных клеток головного и спинного мозга используют в качестве медиаторов вещества-аминокислоты, которые переносят основную часть сенсорных, двигательных и прочих сигналов по нейронным сетям (возбуждающие аминокислоты), а также осуществляют управление таким переносом (тормозные аминокислоты). Можно сказать, что аминокислоты реализуют быструю передачу информации, а моноамины и ацетилхолин создают общий мотивационно-эмоциональный фон и «наблюдают» за уровнем бодрствования. Существуют и еще более «медленные» уровни регуляции деятельности мозга — это системы нейропептидов и гормональные влияния на ЦНС.

По сравнению с образованием моноаминов синтез медиаторов-аминокислот является для клетки более простым процессом, и все они несложны по химическому составу. Медиаторы этой группы характеризуются большей специфичностью синаптических эффектов — либо конкретному соединению присущи возбуждающие свойства (глутаминовая и аспарагиновая кислоты), либо тормозные (глицин и гамма-аминомасляная кислота — ГАМК). Агонисты и антагонисты аминокислот вызывают более предсказуемые эффекты в ЦНС, чем агонисты и антагонисты ацетилхолина и моноаминов. С другой стороны, воздействие на глутамат или ГАМК-ергические системы нередко приводит к слишком «широким» изменениям во всей ЦНС, что создает свои трудности.

Главным возбуждающим медиатором ЦНС является глутаминовая кислота. В нервной ткани взаимные превращения глутаминовой кислоты и ее предшественника глутамина выглядят следующим образом:

Будучи заменимой пищевой аминокислотой, она широко распространена в самых разных белках, и ее суточное потребление составляет не менее 5—10 г. Однако глутаминовая кислота пищевого происхождения в норме очень плохо проникает через гематоэнцефалический барьер, что предохраняет нас от серьезных сбоев в деятельности мозга. Практически весь глутамат, необходимый ЦНС, синтезируется прямо в нервной ткани, но ситуация усложняется тем, что данное вещество является также промежуточной стадией в процессах внутриклеточного обмена аминокислот. Поэтому нервные клетки содержат много глутаминовой кислоты, лишь небольшая часть которой выполняет медиаторные функции. Синтез такого глутамата происходит в пресинаптических окончаниях; основной источник-предшественник — аминокислота глутамин.

Выделяясь в синаптическую щель, медиатор действует на соответствующие рецепторы. Разнообразие рецепторов к глутаминовой кислоте чрезвычайно велико. В настоящее время выделяют три типа ионотропных и до восьми типов метаботропных рецепторов. Последние менее распространены и менее изучены. Их эффекты могут реализоваться как путем подавления активности аценилатциклазы, так и через усиление образования диацилглицерола и инозитолтрифосфата.

Ионотропные рецепторы к глутаминовой кислоте получили свои названия по специфическим агонистам: NMDA-рецепторы (агонист N-метил-D-аспартат), АМРА-рецепторы (агонист альфа-аминогидроксиметилизоксанолпропионовая кислота) и каинатные (агонист каиновая кислота). Сегодня наибольшее внимание уделяется первому из них. NMDA-peцепторы широко распространены в ЦНС от спинного мозга до коры больших полушарий, больше всего их в гиппокампе. Рецептор (рис. 3.36) состоит из четырех белков-субъединиц, имеющих два активных центра для связывания глутаминовой кислоты 1 и два активных центра для связывания глицина 2. Эти же белки формируют ионный канал, который может блокироваться ионом магния 3 и канальными блокаторами 4.

 

 
Рис. 3.36. Схема NMDA-рецептора

 

Функция глицина состоит в усилении ответов NMDA-peцептора. Происходит это при низких концентрациях аминокислоты — меньших, чем необходимо для проявления собственных медиаторных свойств глицина. Сам по себе глицин постсинаптических потенциалов не вызывает, но при полном отсутствии глицина их не вызывает и глутамат.

Ионный канал NMDA-рецептора проходим для ионов Na+, К+, Ca2+ (в этом его сходство с никотиновым рецептором). На уровне потенциала покоя через него могут осуществлять движение ионы натрия и кальция. Однако их токи оказываются выключены, если канал заблокирован ионом Mg2+ (что обычно наблюдается в некоторое время «на работавшем» синапсе).

При поляризации мембраны нейрона до уровня примерно −40 мВ происходит выбивание магниевой пробки и рецептор переходит в активное состояние (рис. 3. 37, а). Такая деполяризация в реальных условиях наблюдается на фоне срабатывания других (не-NMDA) рецепторов к глутаминовой кислоте. Возврат «магниевых пробок» может занимать несколько часов, и в течение всего этого периода соответствующий синапс будет сохранять повышенную активность, т. е. при появлении глутаминовой кислоты (ГлК) каналы NMDA-рецепторов будут

Рис. 3.37. Схема срабатывания NMDA-рецептора: выбивание Mg2+-пробки (а) приводит к переходу рецептора в рабочее состояние (б) открываться, создавая условия для входа Na+ и Ca2+ (рис. 3.37, б). Данное явление лежит в основе одного из типов кратковременной памяти и называется долговременной потенциацией.

Канальные блокаторы кетамин, дизоцилпин (синоним — МК-801) и другие перекрывают канал NMDA-рецептора и прерывают идущие через него ионные токи. При этом в одних случаях наблюдается прочное установление «пробки», и соответствующий препарат оказывается стабильно связан с внутренней поверхностью канала; в других случаях блокада оказывается потенциал-зависимой, и молекулы препарата ведут себя, подобно ионам Mg2+, покидая канал при деполяризации мембраны. Последний вариант оказался наиболее перспективным с точки зрения клинического применения.

Вход через канал NMDA-рецепторов ионов Na+ и Ca2+ означает, что в итоге возникнет не только ВПСП, но и ряд метаболических изменений в цитоплазме постсинаптического нейрона, поскольку ионы кальция способны регулировать деятельность многих внутриклеточных ферментов, в том числе связанных с синтезом других вторичных посредников. Избыточная активация этого механизма может быть опасна: если каналы NMDA-рецепторов открыты слишком долго, в клетку войдет очень много Ca2+ и произойдет чрезмерная активация внутриклеточных ферментов, а взрывообразный рост интенсивности обмена веществ может привести к повреждению и даже гибели нейрона. Подобный эффект определяется как нейротоксическое действие глутамата. С ним приходится считаться при различных видах перевозбуждения нервной системы, особенно велика вероятность таких повреждений у людей с врожденными нарушениями внутриклеточного транспорта и связывания ионов кальция (например, их переноса из цитоплазмы в каналы ЭПС).

В редких случаях наблюдается нейротоксическое действие глутамата, принимаемого с пищей: плохо проходя из крови в нервную ткань, он все же способен частично проникать в ЦНС в тех зонах, где гематоэнцефалический барьер ослаблен (гипоталамус и дно четвертого желудочка — ромбовидная ямка). Возникающие при этом активационные изменения используют в клинике, назначая по 2—3 г глутамата в сутки при задержках психического развития, истощении нервной системы. Кроме того, глутамат широко используется в пищевой промышленности как вкусовая добавка (имеет мясной вкус) и входит в состав многих пищевых концентратов. Очень богаты им также некоторые восточные приправы, изготовленные из морской капусты. Человек, съевший несколько блюд японской кухни, может одномоментно получить 10—30 г глутамата; последствиями этого нередко становятся активация сосудодвигательного центра продолговатого мозга, рост артериального давления и учащение сердцебиения. Это состояние опасно для здоровья, поскольку может вызвать сердечный приступ и даже инфаркт. В более тяжелом случае происходит локальная гибель нейронов, «перенасытившихся» кальцием. Развитие таких очагов нейродегенерации напоминает по форме микроинсульт.

Поскольку глутамат как медиатор ЦНС распространен очень широко, эффекты его агонистов и антагонистов захватывают многие системы мозга, т. е. они очень генерализованы. Типичным следствием введения агонистов является заметная активация ЦНС — вплоть до развития судорог. Особенно известна в этом смысле каиновая кислота — токсин одной из водорослей Японского моря, вызывающий в больших дозах дегенерацию глутаматергических нейронов (табл. 3.4).

Антагонисты глутаминовой кислоты в норме оказывают тормозящее действие на работу мозга и способны избирательно снижать патологическую активность ЦНС. Препараты этой группы эффективны при эпилепсии, паркинсонизме, болевых синдромах, бессоннице, повышенной тревожности, некоторых видах депрессии, после травм и даже при болезни Альцгеймера. Однако конкурентные антагонисты NMDA-рецепторов пока не нашли клинического применения в силу слишком большой генерализованноети изменений. Наиболее перспективной группой оказались блокаторы ионных каналов, причем не связывающиеся с каналом слишком прочно (например, амантадин, будипин, мемантин).

Внедрение этих препаратов во врачебную практику в настоящее время только начинается. Они особенно эффективны в ситуациях избыточной активности NMDA-рецепторов, которые возникают как результат недостаточно прочного удержания магниевых пробок; в этих же целях пытаются использовать блокаторы места связывания глицина с NMDA-рецептором (ликостинел).

Другое соединение, уже получившее практическое применение, — ламотриджин. Механизм его действия, тормозящего глутаматергическую систему, заключается в стабилизации пресинаптических мембран, поэтому выделение медиатора в синаптическую щель заметно снижается. Ламотриджин — перспективный противоэпилептический препарат, особенно при сочетании с агонистами ГАМК.

Таблица 3.4. ВЕЩЕСТВА, ВЛИЯЮЩИЕ НА ДЕЯТЕЛЬНОСТЬ ГЛУТАМАТЕРГИЧЕСКИХ СИНАПСОВ  
Вещество Механизм действия
Каиновая кислота Агонист глутамата, в больших дозах — нейротоксин
Кетамин (калипсол), фенциклидин Прочная блокада ионного канала NMDA-рецептора
Амантадин, будипин, мемантин Потенциал-зависимая блокада ионного канала NMDA-рецептора
Глицин Необходим для срабатывания NMDA-рецептора; усиливает ответ на глутаминовую кислоту
Ликостинел Блокатор места связывания глицина
Ламотриджин Стабилизирует пресинаптические мембраны, уменьшая выброс глутаминовой кислоты

Особой категорией веществ, связанных с деятельностью NMDA-рецепторов, являются «прочные» блокаторы их ионных каналов. Наиболее известен среди них кетамин (синоним — калипсол), который используется в клинике как препарат, оказывающий мощное анальгезирующее действие, а также вызывающий быстрый наркоз. Побочный эффект кетамина — появление галлюцинаций. Галлюциногенное действие значительно более выражено у второго препарата данной группы — фенциклидина, который исходно также использовался для обезболивания, но затем перестал применяться, сохранив «значение» как наркотик-галлюциноген.

Эффекты фенциклидина своеобразны: в малых количествах он вызывает эйфорию и онемение; речь и координация движений нарушаются. При увеличении дозы возникает затуманенность зрения, однако визуальные (зрительные) галлюцинации редки (в отличие от ЛСД), и в основном происходит нарушение осязательных ощущений. Действие наркотика продолжается обычно несколько часов, но после больших доз — до нескольких дней и даже недель. Вероятность «плохих путешествий» очень велика — 50—80%. Нередко наблюдаются вспышки ярости и даже депрессии, требующие дальнейшего медицинского вмешательства.

Инактивация глутаминовой кислоты осуществляется в основном путем захвата глиальными клетками (астроцитами), затем происходит превращение ее в глутамин, аспарагиновую кислоту и ГАМК. Аспарагиновая кислота (аспартат) также может выполнять в ЦНС функции возбуждающего медиатора. По своей химической формуле она очень близка к глутаминовой и действует на те же рецепторы.







Дата добавления: 2015-10-12; просмотров: 4643. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия