Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Смешанное произведение векторов. Определение 2. Смешанным произведением упорядоченной тройки геометрических векторов , , называется число





Определение 2. Смешанным произведением упорядоченной тройки геометрических векторов , , называется число, равное .

Итак, для того, чтобы найти смешанное произведение векторов, надо, не меняя порядок этих векторов, найти их векторное произведение, а затем скалярное произведение полученного и оставшегося векторов.

Для смешанного произведения векторов используются обозначения: .

Теорема 3. Смешанное произведение упорядоченной тройки некомпланарных векторов , и равно объему параллелепипеда, построенного на этих векторах, и взятому со знаком «», если тройка векторов – правая, и взятому со знаком «», если тройка векторов – левая.

Доказательство. Пусть заданы векторы , , . Рассмотрим векторное

произведение векторов и . Это вектор, перпендикулярный плоскости векторов , , равный по длине площади параллелограмма, построенного на этих векторах.

Рассмотрим теперь скалярное произведение векторов и . Отметим, что векторы , и вектор образуют правую тройку векторов. Поэтому, если векторы , , также образуют правую тройку векторов, то векторы и образуют между собой острый угол и их скалярное произведение положительно. (Иначе оно отрицательно.) В то же время , т. е. смешанное , , по модулю равно произведению площади основания параллелепипеда (параллелограмма, построенного на векторах , ) на высоту к этому основанию. Теорема доказана.

Итак, результатом смешанного произведения векторов является число, равное 0, если векторы , , компланарны, т. е. лежат в одной плоскости. Если векторы , , не лежат в одной плоскости, то смешанное произведение положительно, когда векторы , , являются правой тройкой векторов, и оно отрицательно, когда векторы , , являются левой тройкой векторов.

5. Вычисление смешанного произведения
в декартовой системе координат

Теорема 4. Смешанное произведение упорядоченной тройки некомпланарных векторов равно определителю, у которого первая строка состоит из координат первого вектора, вторая строка состоит из координат второго вектора, третья строка состоит из координат третьего вектора.

Доказательство. Пусть заданы векторы , , . Рассмотрим векторное произведение . Если мы этот вектор скалярно умножим на вектор , то получим искомую величину . Теорема доказана.

Отметим некоторые свойства смешанного произведения.

1) Если поменять местами 2 вектора тройки векторов, их смешанное произведения изменит знак.

2) Объем параллелепипеда равен модулю смешанного произведения векторов, образующих этот параллелепипед.

3) Объем тетраэдра равен одной шестой модуля смешанного произведения векторов, образующих этот тетраэдр.

4) Смешанное произведение трех векторов равно 0 тогда и только тогда, когда эти векторы линейно зависимы.







Дата добавления: 2015-10-12; просмотров: 465. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия