Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение прямой в пространстве





Под прямой в пространстве мы будем понимать общую часть двух пересекающихся плоскостей. Следовательно, общим уравнением прямой в пространстве является система уравнений (14)

Система уравнений вида (15) называется каноническим уравнением прямой в пространстве. Система (15) является уравнением прямой, проходящей через точку параллельно вектору .

Пусть заданы 2 точки: и . Уравнение прямой запишется в виде (15 /).

Система уравнений вида (16) называется параметрическим уравнением прямой в пространстве. Система (16) эквивалентна каноническому уравнению прямой в пространстве.

Пусть уравнение прямой задано в виде (14). Как записать его в более удобном каноническом виде? Для этого надо найти частное решение (14) – точку и, самое главное, - вектор , параллельный искомой прямой. В системе (14) две плоскости и имеют соответственно нормали (перпендикулярные им вектора) , . Так как каждая прямая плоскости перпендикулярна нормали к плоскости, то общая прямая этих двух плоскостей перпендикулярна и вектору и вектору . Следовательно, в качестве вектора можно взять вектор . Рассмотрим пример решения такой задачи.

Пример 1. Напишите уравнение прямой в каноническом виде.

Решение. Заметим, что точка принадлежит каждой из плоскостей и, следовательно, лежит на искомой прямой. Для нахождения направляющего вектора этой прямой найдем векторное произведение векторов и , т. е. раскроем определитель . В итоге векторное произведение равно вектору и каноническое уравнение прямой можно записать в виде .

 







Дата добавления: 2015-10-12; просмотров: 329. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия