Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Однородные системы с постоянными коэффициентами.


Система является определенной, т.е. имеет единственное решение, если D ¹ 0.

Система всегда имеет тривиальное (нулевое) решение, поэтому, чтобы получить ненулевое решение потребуем D = 0.

D = det (Ak × E) = 0 – характеристическое уравнение исходной системы.

1 случай:

k 1, k 2, …, kn – различные и вещественные корни характеристического уравнения. С помощью k 1 из системы (1) получаем решение:

Аналогично получаем x 2, x 3, …, xn. Общее решение системы:

Пример:

2 случай:

k 1, k 2, …, kn – различные, но среди них есть комплексные (могут быть все комплексные).

Очевидно, что x 1 и x 2 – комплексно-сопряженные (их вещественные и мнимые части равны), поэтому можно рассматривать один корень и, складывая отдельно вещественные, отдельно мнимые части, получить искомые решения.

Пример:

Системы дифференциальных уравнений.

Данная система записана в нормальном виде.

Метод исключения.

1. Получим систему в виде:

2. Из первых (n – 1) уравнений полученной системы выразить x 2, x 3, …, xn и подставить в последнее уравнение.

3. Решить полученное уравнение (после его решения мы найдем x 1)

4. Найти x 2, x 3, …, xn, пользуясь соотношениями из второго пункта.

Пример:

Пример:

Однородные системы с постоянными коэффициентами.

Система является определенной, т.е. имеет единственное решение, если D ¹ 0.

Система всегда имеет тривиальное (нулевое) решение, поэтому, чтобы получить ненулевое решение потребуем D = 0.

D = det (Ak × E) = 0 – характеристическое уравнение исходной системы.

1 случай:

k 1, k 2, …, kn – различные и вещественные корни характеристического уравнения. С помощью k 1 из системы (1) получаем решение:

Аналогично получаем x 2, x 3, …, xn. Общее решение системы:

Пример:

2 случай:

k 1, k 2, …, kn – различные, но среди них есть комплексные (могут быть все комплексные).

Очевидно, что x 1 и x 2 – комплексно-сопряженные (их вещественные и мнимые части равны), поэтому можно рассматривать один корень и, складывая отдельно вещественные, отдельно мнимые части, получить искомые решения.

Пример:




<== предыдущая лекция | следующая лекция ==>
Однородные системы с постоянными коэффициентами. Иногда, чтобы получить линейное уравнение, требуется поменять ролями x и y по теореме о производной обратной функции. | Основные направления развития нанотехнологий в России

Дата добавления: 2015-10-12; просмотров: 414. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия