Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Однородные системы с постоянными коэффициентами.


Система является определенной, т.е. имеет единственное решение, если D ¹ 0.

Система всегда имеет тривиальное (нулевое) решение, поэтому, чтобы получить ненулевое решение потребуем D = 0.

D = det (Ak × E) = 0 – характеристическое уравнение исходной системы.

1 случай:

k 1, k 2, …, kn – различные и вещественные корни характеристического уравнения. С помощью k 1 из системы (1) получаем решение:

Аналогично получаем x 2, x 3, …, xn. Общее решение системы:

Пример:

2 случай:

k 1, k 2, …, kn – различные, но среди них есть комплексные (могут быть все комплексные).

Очевидно, что x 1 и x 2 – комплексно-сопряженные (их вещественные и мнимые части равны), поэтому можно рассматривать один корень и, складывая отдельно вещественные, отдельно мнимые части, получить искомые решения.

Пример:

Системы дифференциальных уравнений.

Данная система записана в нормальном виде.

Метод исключения.

1. Получим систему в виде:

2. Из первых (n – 1) уравнений полученной системы выразить x 2, x 3, …, xn и подставить в последнее уравнение.

3. Решить полученное уравнение (после его решения мы найдем x 1)

4. Найти x 2, x 3, …, xn, пользуясь соотношениями из второго пункта.

Пример:

Пример:

Однородные системы с постоянными коэффициентами.

Система является определенной, т.е. имеет единственное решение, если D ¹ 0.

Система всегда имеет тривиальное (нулевое) решение, поэтому, чтобы получить ненулевое решение потребуем D = 0.

D = det (Ak × E) = 0 – характеристическое уравнение исходной системы.

1 случай:

k 1, k 2, …, kn – различные и вещественные корни характеристического уравнения. С помощью k 1 из системы (1) получаем решение:

Аналогично получаем x 2, x 3, …, xn. Общее решение системы:

Пример:

2 случай:

k 1, k 2, …, kn – различные, но среди них есть комплексные (могут быть все комплексные).

Очевидно, что x 1 и x 2 – комплексно-сопряженные (их вещественные и мнимые части равны), поэтому можно рассматривать один корень и, складывая отдельно вещественные, отдельно мнимые части, получить искомые решения.

Пример:




<== предыдущая лекция | следующая лекция ==>
Однородные системы с постоянными коэффициентами. Иногда, чтобы получить линейное уравнение, требуется поменять ролями x и y по теореме о производной обратной функции. | Основные направления развития нанотехнологий в России

Дата добавления: 2015-10-12; просмотров: 414. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия