Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Однородные системы с постоянными коэффициентами. Иногда, чтобы получить линейное уравнение, требуется поменять ролями x и y по теореме о производной обратной функции.


Пример:

Пример:

Найти кривые, у которых площадь трапеций, ограниченных осями координат, касательной и ординатой точки касания, равна 27.

Системы дифференциальных уравнений.

Данная система записана в нормальном виде.

Метод исключения.

1. Получим систему в виде:

2. Из первых (n – 1) уравнений полученной системы выразить x 2, x 3, …, xn и подставить в последнее уравнение.

3. Решить полученное уравнение (после его решения мы найдем x 1)

4. Найти x 2, x 3, …, xn, пользуясь соотношениями из второго пункта.

Пример:

Пример:

Однородные системы с постоянными коэффициентами.

Система является определенной, т.е. имеет единственное решение, если D ¹ 0.

Система всегда имеет тривиальное (нулевое) решение, поэтому, чтобы получить ненулевое решение потребуем D = 0.

D = det (Ak × E) = 0 – характеристическое уравнение исходной системы.

1 случай:

k 1, k 2, …, kn – различные и вещественные корни характеристического уравнения. С помощью k 1 из системы (1) получаем решение:

Аналогично получаем x 2, x 3, …, xn. Общее решение системы:

Пример:

2 случай:

k 1, k 2, …, kn – различные, но среди них есть комплексные (могут быть все комплексные).

Очевидно, что x 1 и x 2 – комплексно-сопряженные (их вещественные и мнимые части равны), поэтому можно рассматривать один корень и, складывая отдельно вещественные, отдельно мнимые части, получить искомые решения.

Пример:




<== предыдущая лекция | следующая лекция ==>
Дифференциальные уравнения с разделяющимися переменными. | Однородные системы с постоянными коэффициентами.

Дата добавления: 2015-10-12; просмотров: 569. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия