Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Подведение итогов. Отметим важный факт: структура неограниченного портфеля (для которого сум­ма весов больше 1, a NIC является частью портфеля) неизменна для любого уров­ня Е;





 

Отметим важный факт: структура неограниченного портфеля (для которого сум­ма весов больше 1, a NIC является частью портфеля) неизменна для любого уров­ня Е; единственным отличием является величина заемных средств (величина ры­чага). Для портфелей, лежащих на эффективной границе, когда сумма весов огра­ничена, это не так. Другими словами, для любой точки на неограниченных эффективных границах (AHPR или GHPR) отношения весов различных рыноч­ных систем всегда одинаковы.

Например, можно рассчитать отношения весов между различными рыночными системами в геометрическом оптимальном портфеле. Отношение Toxico к Incubeast составляет: 102,5982% / 49,00558% = 2,0936. Таким же образом мы можем опре­делить отношения всех компонентов в портфеле друг к другу:

Toxico / Incubeast = 2,0936

Toxico / LA Garb = 2,5490

Incubeast / LA Garb = 1,2175

Теперь вернемся к неограниченному портфелю и найдем веса для различных зна­чений Е. Далее следуют веса компонентов неограниченных портфелей, которые имеют самые низкие дисперсии для данных значений Е. Заметьте, что отношения весов компонентов одинаковы:

 

    E=0,1 Е=0,3
Toxico 0,4175733 1,252726
Incubeast 0,1994545 0,5983566
LA Garb 0,1638171 0,49145

 

Таким образом, мы можем утверждать, что эффективные границы портфелей с неограниченной суммой весов содержат одинаковые портфели с разным уровнем за­емных средств (с разным плечом). Портфель, в котором меняется величина плеча для получения заданного уровня прибыли Е, когда снято ограничение суммы весов, будет иметь второй множитель Лагранжа, равный нулю, при сумме весов, равной 1. Теперь мы можем достаточно просто определить, каким будет наш неограни­ченный геометрический оптимальный портфель. Сначала найдем портфель, который имеет нулевое значение для второго множителя Лагранжа, когда сумма весов ограничена 1,00. Одним из способов поиска такого портфеля является процесс итераций. Получившийся в результате портфель поднимается (или опускается) рычагом в зависимости от выбранного Е для неограниченного пор­тфеля. Значение Е, удовлетворяющее любому уравнению с (7.06а) по (7.06г), и будет тем значением, которое соответствует неограниченному геометрическому оптимальному портфелю. Для выбора геометрического оптимального портфеля на эффективной границе AHPR для портфелей с неограниченными весами, можно использовать первый множитель Лагранжа, который определяет поло­жение портфеля на эффективной границе. Вспомните (см. главу 6), что одним из побочных продуктов при определении состава портфеля методом элементар­ных построчных преобразований является первый множитель Лагранжа. Он выражает мгновенную скорость изменения дисперсии по отношению к ожидае­мой прибыли (с обратным знаком). Первый множитель Лагранжа, равный - 2, означает, что в этой точке дисперсия изменяется по отношению к ожидаемой прибыли со скоростью 2. В результате, мы получим портфель, который геомет­рически оптимален.

(7.06д) L1 = - 2,

 

где L1 = первый множитель Лагранжа данного портфеля на эффективной границе AHPR для портфелей с неограниченной суммой весов1.

 

Теперь объединим эти концепции вместе. Портфель, который с помощью рычага перемещается вдоль эффективных границ (арифметических или геометрических) портфелей с неограниченной суммой весов, является касательным портфелем к ли­нии CML, выходящей из RFR == 0, когда сумма весов ограничена 1,00 и NIC не ис­пользуется. Итак, мы можем найти неограниченный геометрический оптимальный порт­фель путем поиска касательного портфеля для RFR = 0, когда сумма весов огра­ничена 1,00, а затем поднять рычагом полученный портфель до точки, где он ста­новится геометрическим оптимальным. Но как определить, насколько повысить данный ограниченный портфель, чтобы сделать его эквивалентным неограни­ченному геометрическому оптимальному портфелю?

Вспомните, что касательный портфель находится на эффективной грани­це (арифметической или геометрической) портфелей с ограниченной сум­мой весов в точке с наивысшим отношением Шарпа (уравнение (7.01)). Мы просто повысим рычагом этот портфель и умножим веса каждого из его ком­понентов на переменную, называемую q, которую можно получить следую­щим образом:

(7.13) q=(E-RFR)/V,

где Е = ожидаемая прибыль (арифметическая) касательного портфеля;

RFR = безрисковая ставка, по которой вы можете занять или дать взай­мы;

V= дисперсия касательного портфеля.

Уравнение (7.13) является достаточно хорошим приближением реального опти­мального q.

Следующий пример может проиллюстрировать роль оптимального q. Вспом­ните, что наш неограниченный геометрический оптимальный портфель выгля­дит так:

 

Компонент Вес
Toxico 1,025955
Incubeast 0,4900436
LA Garb 0,4024874

 

Портфель имеет AHPR= 1,245694 и дисперсию 0,2456941. В оставшейся час­ти нашего обсуждения мы будем исходить из того, что RFR = 0 (в данном слу­чае отношение Шарпа этого портфеля, (AHPR-(1 + RFR)) / SD, равно 0,49568).

Теперь, если мы введем те же прибыли, дисперсии и коэффициенты корреляции компонентов в матрицу и рассчитаем, какой портфель находится в точке касания при RFR = 0, когда сумма весов ограничена 1,00 и при отсутствии NIC, то полу­чим следующий портфель:

 

Компонент Вес
Toxico 0,5344908
Incubeast 0,2552975
LA Garb 0,2102117

 

Этот портфель имеет AHPR = 1,128, дисперсию 0,066683 и отношение Шарпа 0,49568. Отметьте, что отношение Шарпа касательного портфеля, для которого сумма весов ограничена 1,00, при отсутствии NIC, в точности равно отноше­нию Шарпа для нашего неограниченного геометрического оптимального портфе­ля. Вычитая единицу из полученных AHPR, мы получаем арифметическую среднюю прибыль портфеля. Далее заметим: чтобы для ограниченного каса­тельного портфеля получить прибыль, равную прибыли неограниченного геометрического оптимального портфеля, мы должны умножить веса первого на 1,9195.

0,245694/0,128=1,9195

Теперь, если мы умножим каждый из весов ограниченного касательного портфе­ля, то получим портфель, идентичный неограниченному геометрическому опти­мальному портфелю:

 

Компонент Вес * 1,9195 = Вес
Toxico 0,5344908     1,025955
Incubeast 0,2552975     0,4900436
LA Garb 0,2102117     0,4035013

 

Множитель 1,9195 получен в результате деления прибыли неограниченного гео­метрического оптимального портфеля на прибьыь ограниченного касательного портфеля. Как правило, нам надо найти неограниченный геометрический опти­мальный портфель, зная только ограниченный касательный портфель. Именно здесь и используется оптимальное q. Если мы допускаем, что RFR = 0, то можно

определить оптимальное q по нашему ограниченному касательному портфелю следующим образом:

(7.13) q=(E-RFR)/V=(0,128-0)/0,066683 = 1,919529715

Несколько замечаний по поводу RFR. Когда речь идет о фьючерсных контрактах, следует приравнять RFR к нулю, так как в действительности мы не занимаем и не ссужаем средства для увеличения или уменьшения активов портфеля. С акциями ситуация иная, и RFR следует принимать во внимание.

Вы часто будете использовать AHPR и дисперсию для портфелей на основе дневных HPR компонентов. В таких случаях необходимо применять не годо­вую, а дневную ставку RFR. Это довольно простая задача. Сначала необходимо убедится, что годовая ставка является эффективной годовой процентной ставкой. Процентные ставки обычно указываются в годовых процентах, но часто они представляют собой номинальную годовую процентную ставку. Если процентная ставка складывается из полугодовых, квартальных, месячных ставок и т.д., то ставка, заработанная за год, будет больше, чем просто годовая ставка (номи­нальная). Когда процент суммируется, эффективная годовая процентная ставка может быть определена из номинальной процентной ставки. Полученную эф­фективную годовую процентную ставку мы и будем использовать в расчетах. Для преобразования номинальной ставки в эффективную ставку следует ис­пользовать формулу:

где Е = эффективная годовая процентная ставка;

R = номинальная годовая процентная ставка;

М == число периодов сложения за год.

Предположим, номинальная годовая процентная ставка составляет 9%, и доход по ней пересчитывается каждый месяц по формуле сложного процента. Соответ­ствующая эффективная процентная ставка будет равна:

(7.14) Е = (1+0,09/12)^ 12-1 = (1 + 0,0075)^12-1 ==1,0075^12- 1 = 1,093806898 = 0,093806898

Таким образом, наша эффективная годовая процентная ставка будет немногим больше 9,38%. Теперь, чтобы рассчитать HPR на основе рабочих дней, мы долж­ны найти среднее число рабочих дней 365,2425 /7*5= 260,8875. Разделив 0,093806898 на 260,8875, мы получим дневное RFR = 0,0003595683887.

Если мы на самом деле будем привлекать средства, чтобы получить из ограни­ченного касательного портфеля неограниченный геометрический оптимальный портфель, необходимо ввести значение RFR в отношение Шарпа, уравнение (7.01), и оптимальное q, уравнение (7.13).

Подведем итог. Допустим, RFR для вашего портфеля не равно 0, и необходимо найти геометрический оптимальный портфель, не рассчитывая ограниченный касательный портфель для этого RFR. Можете ли вы перейти прямо к матрице, установить сумму весов на какое-либо произвольно высокое значение, добавить NIC и найти неограниченный геометрический оптимальный портфель, когда RFR больше О? Да, если вычесть RFR из ожидаемых прибылей каждого компо­нента, но не из NIC (т.е. ожидаемая прибыль для NIC остается нулевой, что соот­ветствует среднему арифметическому HPR= 1,00). Теперь, решив матрицу, мы получим неограниченный геометрический оптимальный портфель, когда RFR больше 0.

Так как эффективная граница для портфелей с неограниченной суммой весов дает один и тот же портфель с различной величиной рычага, линия CML не может пересекаться или касаться эффективной границы портфелей с неограниченной суммой весов, если же сумма весов ограничена (т.е. равна 1) — это возможно.

Мы рассмотрели несколько способов определения геометрического оптимального портфеля. Например, мы можем рассчитать его эмпирически, что было продемон­стрировано в книге «Формулы управления портфелем» и повторено в первой главе этой книги. В данной главе мы узнали, как с помощью параметрического метода рас­считать портфель при любом значении безрисковой ставки.

Теперь, когда мы знаем, как определить геометрический оптимальный порт­фель, рассмотрим его использование в реальной жизни. Геометрический оптималь­ный портфель даст нам максимально возможный геометрический рост. В следую­щей главе мы рассмотрим способы использования этого портфеля при заданных рисковых ограничениях.

 







Дата добавления: 2015-10-12; просмотров: 377. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия