Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интерпретация результатов. После того как найдена единичная матрица, следует интерпретировать получен­ные результаты





После того как найдена единичная матрица, следует интерпретировать получен­ные результаты. В данном случае при наличии входных данных об ожидаемых прибылях и дисперсии прибылей по всем рассматриваемым компонентам, при наличии коэффициентов линейной корреляции каждой пары компонентов и ожидаемой отдаче 14% наше решение является оптимальным. Слово «оптималь­ный» означает, что полученное решение дает самую низкую дисперсию при ожи­даемой прибыли 14%. Мы можем определить это значение дисперсии, но сначала интерпретируем результаты.

Первые четыре значения, от X1 до Х4 дают нам веса, т.е. доли инвестируемых средств, для получения оптимального портфеля с 14%-ой ожидаемой прибылью. Нам следует инвестировать 12,391% в Toxico, 12,787% в Incubeast, 38,407% в LA Garb и 36,424% в сберегательный счет. Если мы хотим инвестировать 50 000 дол­ларов, то получим:

 

Акция Процент (* 50000 =) сумма инвестиций
Toxico 0,12391 $6195,50
Incubeast 0,12787 $6393,50
LA Garb 0,38407 $19 203,50
Сберегательный счет 0,36424 $18212,00

 

Таким образом, в Incubeast мы бы инвестировали 6393,50 доллара. Теперь допус­тим, что Incubeast котируется по цене 20 долларов за акцию, т.е. следует купить 319,675 акции (6393,5 / 20). На самом деле мы не можем купить дробное число акций, поэтому купим либо 319, либо 320 акций. Следует также отметить, что не­большой лот из 19 или 20 акций, остающийся после покупки первых 300 акций, будет стоить дороже. Нестандартные, малые лоты обычно стоят несколько доро­же, поэтому мы переплатим за 19 или 20 акций, а это коснется ожидаемой прибы­ли по нашей позиции в Incubeast и в свою очередь затронет оптимальную комби­нацию портфеля. В некоторых случаях следует ограничиться только стандартным лотом (в на­шем случае — это 300 акций). Как видите, необходимо учитывать некоторый коэффициент ухудшения. Мы можем определить оптимальный портфель с точ­ностью до дробной части акции, но реальная торговля все равно внесет свои коррективы. Естественно, чем больше ваш счет, тем ближе будет реальный портфель к тео­ретическому. Допустим, вместо 50 000 долларов вы оперируете пятью миллиона­ми долларов. Вы хотите инвестировать 12,787% в Incubeast (если речь идет только об этих четырех инвестиционных альтернативах) и поэтому будете инвестиро­вать 5 000 000*0,12787 =$639 350. При цене 20 долларов за акцию вы бы ку­пили 639350/20=31967,5 акций. Учитывая круглый лот, вы купите 31900 акций, отклоняясь от оптимального значения примерно на 0,2%. Когда для инве­стирования у вас есть только 50 000 долларов, вы купите 300 акций вместо опти­мального количества 319,675 и таким образом отклонитесь от оптимального зна­чения примерно на 6,5%.

Подставим значения в уравнение (6.06a) (стр. 281):

Таким образом, при Е = 0,14 самое низкое значение V = 0,0725872809.

Если мы захотим протестировать значение Е = 0,18, то снова начнем с рас­ширенной матрицы, только на этот раз правая верхняя ячейка будет равна 0.18.

Xi     Xj     COVi, j    
0,12391 * 0,12391 * 0,1 0,0015353688
0,12391 * 0,12787 * -0,0237 -0,0003755116
0,12391 * 0,38407 * 0,01 0,0004759011
0,12391 * 0,36424 *    
0,12787 * 0,12391 * -0,0237 -0,0003755116
0,12787 * 0,12787 * 0,25 0,0040876842
0,12787 * 0,38407 * 0,079 0,0038797714
0,12787 * 0,36424 *    
0,38407 * 0,12391 * 0,01 0,0004759011
0,38407 * 0,12787 * 0,079 0,0038797714
0,38407 * 0,38407 * 0,4 0,059003906
0,38407 * 0,36424 *    
0,36424 * 0,12391 *    
0,36424 * 0,12787 *    
0,36424 * 0,38407 *    
0,36424 * 0,36424 *    
                    0,0725872809

 

С помощью построчных операций получим единичную матрицу:

На этот раз в четвертой ячейке столбца ответов мы получили отрицательный ре­зультат. Это означает, что нам следует инвестировать отрицательную сумму в размере 9,81% капитала в сберегательный счет. Чтобы решить проблему отрица­тельного Xi (т.е. когда значение на пересечении строки i и крайнего правого столбца меньшее или равно нулю), мы должны удалить из первоначальной рас­ширенной матрицы строку i + 2 и столбец i и решить задачу для новой расши­ренной матрицы. Если значения последних двух строк крайнего правого столб­ца меньше или равны нулю, нам не о чем беспокоиться, поскольку они соответ­ствуют множителям Лагранжа и могут принимать отрицательные значения. Так как отрицательное значение переменной соответствует отрицательному весу четвертого компонента, мы удалим из первоначальной расширенной матрицы четвертый столбец и шестую строку. Затем используем построчные операции для проведения элементарных преобразований, чтобы получить единичную матрицу:

С помощью построчных операций получим единичную матрицу:

Когда вы удаляете строки и столбцы, важно помнить, какие строки каким пере­менным соответствуют, особенно когда таких строк и столбцов несколько. Допу­стим, нам надо найти веса в портфеле при Е = 0,1965. Единичная матрица, кото­рую мы сначала получим, будет содержать отрицательные значения для весов Toxico (X1) и сберегательного счета (Х4). Поэтому вернемся к нашей первоначаль­ной расширенной матрице:

Теперь удалим строку 3 и столбец 1 (они относятся к Toxico), а также удалим стро­ку 6 и столбец 4 (они относятся к сберегательному счету):

Итак, мы будем работать со следующей матрицей:

С помощью построчных операций получим единичную матрицу:

Решить матрицу можно также с помощью обратной матрицы коэффициентов. Обратная матрица при умножении на первоначальную матрицу дает единичную матрицу. В матричной алгебре матрица часто обозначается выделенной заглавной бук­вой. Например, мы можем обозначить матрицу коэффициентов буквой С. Обрат­ная матрица помечается верхним индексом -1. Обратная матрица к С обозначает­ся как С-1.Чтобы использовать этот метод, необходимо определить обратную мат­рицу для матрицы коэффициентов. Для этого добавим к матрице коэффициентов единичную матрицу. В примере с 4 акциями:

Используя построчные операции, преобразуем матрицу коэффициентов в еди­ничную матрицу. Так как каждая построчная операция, проведенная слева, будет проведена и справа, мы преобразуем единичную матрицу справа в обратную мат­рицу С-1.

Теперь мы можем умножить обратную матрицу С-1 на первоначальный крайний правый столбец, который в нашем случае выглядит следующим образом:

При умножении матрицы на вектор-столбец мы умножаем все элементы первого столбца матрицы на первый элемент вектора, все элементы второго столбца матрицы на второй элемент вектора, и так далее. Если бы вектор был вектор-строка, мы бы умножили все элементы первой строки матрицы на первый элемент вектора, все элементы второй строки матрицы на второй элемент вектора, и так далее. Так как речь идет о векторе-столбце и после­дние четыре элемента нули, нам надо умножить первый столбец обратной матрицы на Е (ожидаемая прибыль портфеля) и второй столбец обратной матрицы на S (сумма весов). Мы получим следующий набор уравнений, в ко­торые можно подставить значения Е и S и получить оптимальные веса.

Матричная алгебра включает в себя гораздо больше тем и приложений, чем было рассмотрено в этой главе. Существуют и другие методы матричной алгебры для ре­шения систем линейных уравнений. Часто вы встретите ссылки на правило Краме­ра, симплекс-метод или симплексную таблицу. Эти методы сложнее, чем методы, описанные в этой главе. Существует множество применений матричной алгебры в бизнесе и науке, мы же затронули ее настолько, насколько необходимо для наших це­лей. Для более подробного изучения матричной алгебры и ее применений в бизнесе и науке рекомендую прочитать книгу «Множества, матрицы и линейное программи­рование» Роберта Л. Чилдресса (Sets, Matrices, and Linear Programming, by Robert L. Childress). Следующая глава посвящена методам, уже рассмотренным в этой главе, приме­нительно к любому торгуемому инструменту с использованием оптимального f и ме­ханических систем.







Дата добавления: 2015-10-12; просмотров: 508. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия