Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Одиночная позиция по базовому инструменту





В главе 3 мы подробно рассмотрели математику поиска оптимального f пара­метрическим способом. Теперь мы можем использовать тот же метод и для

одиночной длинной опционной позиции с учетом нового HPR, которое рассчи­тывается по уравнению (3.30):

где HPR(U) = HPR для данного U;

L= ассоциированное P&L;

W = ассоциированное P&L худшего случая (это всегда отрица­тельное значение);

f == тестируемое значение f;

Р = ассоциированная вероятность.

Для длинной позиции переменная L, т.е. ассоциированное P&L, определяется как разность между ценой базового инструмента U и ценой S.

(5.21 а) L для длинной позиции = U - S

Для короткой позиции ассоциированное P&L рассчитывается наоборот:

(5.216) L для короткой позиции = S - U,

где S = текущая цена базового инструмента;

U = цена базового инструмента для данного HPR.

Мы можем также рассчитать оптимальное f для одиночной позиции по базовому инструменту, используя уравнение (5.14). При этом надо иметь в виду, что опти­мальное f может получиться больше 1.

Пусть цена базового инструмента равна 100, и мы ожидаем пять результатов:

 

Результат Вероятность P&L
  0,15  
  0,30  
  0,50  
  0,25 -5
  0,10 -10

 

Отметьте, что исходя из уравнения (5.10) наше арифметическое математическое ожидание по базовому инструменту составляет 100,576923077. Это означает, что переменная Y для (5.14) равна 0,576923077, так как 100,576923077-100= = 0,576923077. Если рассчитать оптимальное f, используя столбец P&L и уравнение (3.30), мы получим f= 1,9, что соответствует 1 единице на каждые 52,63 дол­лара на счете. Если в уравнении (5.14) использовать данные из столбца «Результат», тогда пе­ременная S равна 100. В этом случае мы не вычитаем значение Y (арифметическое математическое ожидание базового инструмента минус его текущая цена) из U при определении переменной Z(T, U - Y), и получаем оптимальное f около 1,9, что соответствует 1 единице на каждые 52,63 доллара на счете, так как

100 /1,9=52,63.

 

Если вычесть значение Y в выражении Z(T, U - Y), являющемся элементом уравнения (5.14), мы получим математическое ожидание по базовому инструменту, равное его текущему значению, и поэтому f не будет оптимальным. Тем не менее нам следует вычесть значение Y в Z(T, U - Y) для того, чтобы соответствовать расче­там цен опционов, а также формуле «пут-колл» паритета. Если мы будем использовать уравнение (3.30) вместо уравнения (5.14), тогда из каждого значения U в (5.21а) и (5.216) следует вычесть значение Y, то есть надо вычесть Y из каждого P&L, что опять же создает ситуацию, когда нет положительного математического ожидания, и поэтому нет оптимального значения f. Все вышесказанное означает, что если мы откроем позицию по базовому инстру­менту, не имея никаких представлений о направлении движения его цены, то не по­лучим положительного математического ожидания (как происходит с некоторыми опционами) и поэтому не найдем оптимального f. Мы можем получить оптимальное f только в том случае, когда математическое ожидание положительное. Это произой­дет, если базовый инструмент «в тренде».

Теперь у нас есть методология, позволяющая определить оптимальное f (и его побочные продукты) для опционов и базового инструмента (разными способами). Отметьте, что используемые в этой главе методы определения оптимальных f и побочных продуктов для опционов или базового инструмента не требуют обязательного применения механической системы. Вспомним, что эмпири­ческий метод поиска оптимального f основан на эмпирическом потоке P&L, созданном механической системой. Из главы 3 мы узнали о параметрическом методе поиска оптимального f на основе данных, которые имеют нормальное распределение. Тот же метод можно использовать для поиска оптимального f при любом распределении данных, если существует функция распределения. Из главы 4 мы познакомились с параметрическим методом поиска оптималь­ного f для распределений торговых P&L, которые не имеют функций распреде­ления (для механической или немеханической системы) и с методом планиро­вания сценария.

 

В этой главе мы изучили метод поиска оптимального f для немеханических систем. Обратите внимание, все расчеты допускают, что вы в некоторый мо­мент времени «слепо» открываете позицию, причем направленного движе­ния цены базового инструмента не ожидается. Таким образом, предложен­ный метод лишен какого-либо прогноза относительно цены базового инстру­мента. Мы увидели, что можно учесть ценовой прогноз, изменяя каждый день значение базового инструмента в уравнениях 5.17а и 5.176. Даже слабый тренд значительно меняет функцию ожидания. Оптимальная дата выхода мо­жет не быть теперь рыночным днем сразу после дня входа, более того, опти­мальная дата выхода может стать датой истечения срока. В таком случае оп­цион будет иметь положительное математическое ожидание, даже если его держать до даты истечения. При небольшом тренде цены базового инстру­мента значительно изменится не только функция ожидания, но и оптималь­ные f, AHPR и GHPR.

Проиллюстрируем вышесказанное на следующем примере. Пусть цена ис­полнения колл-опциона равна 100 и он истекает 911120, цена базового инстру­мента равна также 100. Волатильность составляет 20%, а сегодняшняя дата 911104. Мы будем использовать формулу товарных опционов Блэка (Н нахо­дим из уравнения (5.07), R = 5%) и 260,8875-дневный год. Для 8 стандартных отклонений рассчитаем оптимальные f (чтобы соответствовать прошлым таб­лицам, которые не учитывают тренд по базовому инструменту), и используем минимальное приращение тика 0,1. В данном случае мы будем учитывать тренд, при котором цена базового инструмента растет на 0,01 пункта (одну де­сятую тика) в день:

 

Дата выхода AHPR GHPR f
Вторник 911105 1,000744 1,000357 0,1081663
Среда 911106 1,000149 1,000077 0,0377557
Четверг 911107 1,000003 1,000003 0,0040674
Пятница 911108 <1 <1  

 

Отметьте, как небольшой тренд (0,01 пункта в день) меняет результаты. Наша оптимальная дата выхода остается 911105, но оптимальное f= 0,1081663, что соответствует 1 контракту на каждые 2645 долларов на балансе счета (2,861* * 100 / 0,1081663). Кроме того, для этого опциона ожидание положительно все время до 911107. Если тренд будет сильнее, результаты изменятся еще больше. Последнее, что необходимо учесть, — это размер комиссионных. Цена опцио­на из уравнения (5.14) (значение переменной Z(T, U - Y)) должна быть уменьшена на размер комиссионных (если с вас берут комиссионные и при открытии по­зиции, то вы должны увеличить значение переменной S из уравнения (5.14) на размер комиссионных).

Мы рассмотрели поиск оптимального f и его побочных продуктов, когда меха­ническая система не используется. Теперь перейдем к изучению одновременной торговли по нескольким позициям.







Дата добавления: 2015-10-12; просмотров: 347. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия