Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Принцип двойственности.





Если формула U [ f1,…,fn ]реализует функцию f, то формула U*=U [ f1*,…,fn* ], т.е. формула, имеющая то же строение, что и формула U, но в которой знаки операций f1,…,fs заменяются соответственно на знаки двойственных им функций f1*,…,fs,* соответственно,реализует функцию f*.

Следствие. Если в формуле булевой функции используются только знаки булевых функций &, Ú, Ø, 1 и 0, то для получения формулы двойственной функции необходимо заменить знак & на знак Ú, Ú на &, 1 на 0 и 0 на 1.

Пример.

Пусть f(x,y,z)=xÚy& . Тогда согласно принципу двойственности справедливо f*(x,y,z)=x&(yÚ ).

 

Запишем СДНФ для функции f*(x1,..,xn):

. (2.4)

Из определения функции f*(x1,..,xn) справедливо: .

Рассмотрим функции, двойственные к функциям, стоящим в левой и правой частях равенства (2.4). Согласно следствию из принципа двойственности, в правой части нужно заменить знак Ú на &, & наÚ. Тогда получим

Справедливо .

Переобозначив параметр , получим окончательный вариант равенства:

.

Тем самым теорема доказана.

Пример.

Пусть (табл.2.12). Существует два набора (s1,s2) значений переменных, на которых f(x1,x2) принимает значение 0. Это наборы (0,1) и (1,0). Отсюда, согласно (2.3), получим – СКНФ функции (x1 «x2).

 

Логическим полиномом или полиномом Жегалкина называется формула (выражение), которая содержит только операции , &, возможно, константы 0, 1 и не содержит скобок. Иначе говоря, логический полином – это выражение следующего вида:

, где i {1, 2, …, n}, j {1, 2, …, s},

может принимать значения либо 0, либо 1.

Пример. 1) 1.

Здесь =1, =1, =0, =1.

2) 1.

Здесь =1, =1.

Из определения следует, что полином Жегалкина для функции двух переменных имеет следующий общий вид:

.

Для функции трех переменных полином Жегалкина имеет вид:

.

 







Дата добавления: 2015-10-12; просмотров: 950. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия