Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы получения полиномов Жегалкина.





1. Метод равносильных преобразований. Используется для функций, заданных формулой. Метод состоит в выполнении следующих действий.

1) В формуле все функции, кроме суммы Жегалкина и эквиваленции, выражаются через отрицание, конъюнкцию и дизъюнкцию. Эквиваленция заменяется отрицанием операции : .

2) Дизъюнкция исключается с помощью закона Моргана: .

3) Отрицание исключается с помощью свойства суммы Жегалкина: .

4) Раскрываются скобки, приводятся подобные с помощью законов:

, , , .

Пример. = = = = = = .

2. Метод неопределенных коэффициентов. Используется для функций, заданных таблицей. Метод состоит в том, что сначала записывается полином Жегалкина для заданной функции в общем виде с неопределенными коэффициентами, затем эти коэффициенты определяются на основе таблицы значений функции от конъюнкции наименьшего ранга к конъюнкциям больших рангов.

Пример. Пусть функция задана таблицей 2.14. Запишем полином Жегалкина для f:

f (, ) = (2.5)

Табл. 2.14
f( , )
     
     
     
     

f (0,0) = ·0 ·0 ·0 =1 (Значение f (0,0) = 1 выбирается из таблицы).

f (1,0) = ·0 ·1 ·0 =0 =0 1=0 =1.

Аналогично, f (0,1) = ·0 ·0 ·1 =0 =0 1=0 =1.

f (1,1) = ·1 ·1 ·1 =1 =1

1 1 1=1 =0.

Теперь можно записать выражение (2.5) с определенными коэффициентами: f (, ) = 1.

Теорема. Любая функция алгебры логики представима в виде полинома Жегалкина единственным образом с точностью до порядка следования слагаемых.







Дата добавления: 2015-10-12; просмотров: 1070. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия