Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы получения полиномов Жегалкина.





1. Метод равносильных преобразований. Используется для функций, заданных формулой. Метод состоит в выполнении следующих действий.

1) В формуле все функции, кроме суммы Жегалкина и эквиваленции, выражаются через отрицание, конъюнкцию и дизъюнкцию. Эквиваленция заменяется отрицанием операции : .

2) Дизъюнкция исключается с помощью закона Моргана: .

3) Отрицание исключается с помощью свойства суммы Жегалкина: .

4) Раскрываются скобки, приводятся подобные с помощью законов:

, , , .

Пример. = = = = = = .

2. Метод неопределенных коэффициентов. Используется для функций, заданных таблицей. Метод состоит в том, что сначала записывается полином Жегалкина для заданной функции в общем виде с неопределенными коэффициентами, затем эти коэффициенты определяются на основе таблицы значений функции от конъюнкции наименьшего ранга к конъюнкциям больших рангов.

Пример. Пусть функция задана таблицей 2.14. Запишем полином Жегалкина для f:

f (, ) = (2.5)

Табл. 2.14
f( , )
     
     
     
     

f (0,0) = ·0 ·0 ·0 =1 (Значение f (0,0) = 1 выбирается из таблицы).

f (1,0) = ·0 ·1 ·0 =0 =0 1=0 =1.

Аналогично, f (0,1) = ·0 ·0 ·1 =0 =0 1=0 =1.

f (1,1) = ·1 ·1 ·1 =1 =1

1 1 1=1 =0.

Теперь можно записать выражение (2.5) с определенными коэффициентами: f (, ) = 1.

Теорема. Любая функция алгебры логики представима в виде полинома Жегалкина единственным образом с точностью до порядка следования слагаемых.







Дата добавления: 2015-10-12; просмотров: 1070. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия