Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы получения полиномов Жегалкина.





1. Метод равносильных преобразований. Используется для функций, заданных формулой. Метод состоит в выполнении следующих действий.

1) В формуле все функции, кроме суммы Жегалкина и эквиваленции, выражаются через отрицание, конъюнкцию и дизъюнкцию. Эквиваленция заменяется отрицанием операции : .

2) Дизъюнкция исключается с помощью закона Моргана: .

3) Отрицание исключается с помощью свойства суммы Жегалкина: .

4) Раскрываются скобки, приводятся подобные с помощью законов:

, , , .

Пример. = = = = = = .

2. Метод неопределенных коэффициентов. Используется для функций, заданных таблицей. Метод состоит в том, что сначала записывается полином Жегалкина для заданной функции в общем виде с неопределенными коэффициентами, затем эти коэффициенты определяются на основе таблицы значений функции от конъюнкции наименьшего ранга к конъюнкциям больших рангов.

Пример. Пусть функция задана таблицей 2.14. Запишем полином Жегалкина для f:

f (, ) = (2.5)

Табл. 2.14
f( , )
     
     
     
     

f (0,0) = ·0 ·0 ·0 =1 (Значение f (0,0) = 1 выбирается из таблицы).

f (1,0) = ·0 ·1 ·0 =0 =0 1=0 =1.

Аналогично, f (0,1) = ·0 ·0 ·1 =0 =0 1=0 =1.

f (1,1) = ·1 ·1 ·1 =1 =1

1 1 1=1 =0.

Теперь можно записать выражение (2.5) с определенными коэффициентами: f (, ) = 1.

Теорема. Любая функция алгебры логики представима в виде полинома Жегалкина единственным образом с точностью до порядка следования слагаемых.







Дата добавления: 2015-10-12; просмотров: 1070. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия