Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы получения полиномов Жегалкина.





1. Метод равносильных преобразований. Используется для функций, заданных формулой. Метод состоит в выполнении следующих действий.

1) В формуле все функции, кроме суммы Жегалкина и эквиваленции, выражаются через отрицание, конъюнкцию и дизъюнкцию. Эквиваленция заменяется отрицанием операции : .

2) Дизъюнкция исключается с помощью закона Моргана: .

3) Отрицание исключается с помощью свойства суммы Жегалкина: .

4) Раскрываются скобки, приводятся подобные с помощью законов:

, , , .

Пример. = = = = = = .

2. Метод неопределенных коэффициентов. Используется для функций, заданных таблицей. Метод состоит в том, что сначала записывается полином Жегалкина для заданной функции в общем виде с неопределенными коэффициентами, затем эти коэффициенты определяются на основе таблицы значений функции от конъюнкции наименьшего ранга к конъюнкциям больших рангов.

Пример. Пусть функция задана таблицей 2.14. Запишем полином Жегалкина для f:

f (, ) = (2.5)

Табл. 2.14
f( , )
     
     
     
     

f (0,0) = ·0 ·0 ·0 =1 (Значение f (0,0) = 1 выбирается из таблицы).

f (1,0) = ·0 ·1 ·0 =0 =0 1=0 =1.

Аналогично, f (0,1) = ·0 ·0 ·1 =0 =0 1=0 =1.

f (1,1) = ·1 ·1 ·1 =1 =1

1 1 1=1 =0.

Теперь можно записать выражение (2.5) с определенными коэффициентами: f (, ) = 1.

Теорема. Любая функция алгебры логики представима в виде полинома Жегалкина единственным образом с точностью до порядка следования слагаемых.







Дата добавления: 2015-10-12; просмотров: 1070. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия