Студопедия — Доказуемость и истина
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказуемость и истина






 

Крупной вехой в истории математической логики стал 1931 г. Именно в этом году Гёдель опубликовал знаменитую теорему о неполноте. Свою эпохальную работу[8]он начинает следующими словами:

«Развитие математики в направлении все большей точности привело к формализации целых ее областей, в связи с чем стало возможно проводить доказательства, пользуясь небольшим числом чисто механических правил. В настоящий момент наиболее исчерпывающими системами являются, с одной стороны, система аксиом, предложенная Уайтхедом и Расселом в работе «Princlpia Mathematica», а с другой — система Цермело—Френкеля в аксиоматической теории множеств. Обе эти системы настолько обширны, что в них оказывается возможным формализовать все методы доказательства, используемые сегодня в математике, — иначе говоря, все эти методы могут быть сведены к нескольким аксиомам и правилам вывода. Поэтому, казалось бы, разумно предположить, что указанных аксиом и правил вполне хватит для разрешения всех математических проблем, которые могут быть сформулированы в пределах данной системы. Ниже будет показано, что дело обстоит не так. В обеих упомянутых системах имеются сравнительно простые задачи из теории обычных целых чисел, которые не могут быть решены на базе этих аксиом».[9]

Далее Гёдель объясняет, что такая ситуация обусловлена отнюдь не какими-то специфическими особенностями двух упомянутых систем, но имеет место для обширного класса математических систем.

Что имеется в виду под «обширным классом» математических систем? Это выражение интерпретировалось по-разному, и соответственно по-разному обобщалась теорема Гёделя. Как ни странно, одно из самых простых и доступных для неспециалиста объяснений остается наименее известным. Это тем более удивительно, что на такое объяснение указывал и сам Гёдель во вводной части своей первой работы. К нему мы сейчас и обратимся.

Рассмотрим систему аксиом со следующими свойствами. Прежде всего пусть у нас имеются имена для различных множеств положительных целых чисел, причем все эти «именуемые», или допускающие наименование, множества мы можем расположить в виде бесконечной последовательности А1, А2…, An… (точно так же, как в системе Фергюссона, рассмотренной в предыдущей главе). Назовем число n индексом именуемого множества А, если А=n. (Таким образом, если, например, множества А2, А7 и A13 совпадают между собой, то тогда числа 2, 7 и 13 — это все индексы одного и того же множества.) Как и для системы Фергюссона, с каждым числом х и с каждым числом у мы связываем утверждение, записываемое в виде х Є Ау, которое называется истинным, если х принадлежит А у, и ложным, если х не принадлежит Ау. Однако в дальнейшем мы не предполагаем, что утверждения типа х Є Ау являются единственно возможными утверждениями в данной системе, поскольку могут существовать и другие. Предполагается также, что любое возможное утверждение обязательно классифицируется либо как истинное, либо как ложное.

Каждому утверждению в данной системе присваивается некий кодовый номер, который мы будем называть геделевым номером, причем гёделев номер утверждения x Є АУ будем обозначать х*у. (Теперь уже нет нужды предполагать, что число х*у состоит из цепочки единиц миной х, за которой следует цепочка нулей длиной у; cам Гёдель фактически использовал совсем другую кодовую нумерацию. Можно пользоваться самыми разными видами кодовой нумерации, и какой вид оказывался более удобным — это зависит от конкретного вида рассматриваемой нами системы. Так или иначе, для доказательства той общей теоремы, которую мы скоро докажем, нет необходимости вводить какую-то конкретную гёделеву нумерацию.)

Определенные утверждения в данной системе принимаются как аксиомы; кроме того, вводятся также некие специальные правила, по которым можно на основании этих аксиом доказывать различные другие утверждения. Таким образом, в данной системе имеется иполне определенное свойство утверждения, называемое его доказуемостью.

Далее предполагается, что система правильна в том смысле, что каждое доказуемое в этой системе утверждение является истинным; отсюда, в частности, следует, что если утверждение x Є Aу доказуемо в данной системе, то число х действительно является элементом множества Ау.

Пусть Р — это набор гёделевых номеров всех доказуемых в данной системе утверждений. Пусть опять же для любого множества чисел А его дополнение обозначается символом А (это множество всех чисел, не принадлежащих А). Наконец, через А* мы будем обозначать множество всех чисел х, для которых число x*х принадлежит А. При этом нас будут интересовать системы, для которых выполняются следующие три условия Gi, G2 и G3:

Условие G1. Множество Р допускает наименование в данной системе. Иначе говоря, существует по крайней мере одно число р, для которого Ар представляет собой множество гёделевых номеров доказуемых утверждений. (Для системы Фергюссона таким р было число 8.)

Условие G2. Дополнение любого множества, допускающего наименование в данной системе, также именуемо в этой системе. Иначе говоря, для любого числа х найдется такое число х, для которого множество А* является дополнением множества Ах. (Для системы Фергюссона таким х было число 3х.)

Условие G3. Для любого именуемого множества А множество А* также именуемо в данной системе. Иначе говоря, для любого числа x всегда найдется такое число х*, что множество А, — представляет собой, множество всех чисел n, для которых n*n принадлежит А, (Для системы Фергюссона таким х* было число 3x+1.)

Очевидно, что условия F1, F2 и Fз, характеризующие машину Фергюссона, представляют собой не более чем частные случаи условий G1, G2 и G3. Последние имеют большое значение потому, что они действительно выполняются для самых разнообразных математических систем, в том числе и для тех двух систем, которые рассмотрены в работе Гёделя. Другими словами, оказывается возможным расположить все допускающие наименование множества в виде бесконечной последовательности A1, A2…, An… и ввести для всех утверждений некоторую частную нумерацию Гёделя, причем так, что будут выполняться условия G 1, G2 и G3. В результате все то, что является доказуемым для систем, удовлетворяющих условиям G1, G2 и G3, будет применимо ко многим другим важным системам. Теперь мы можем сформулировать и доказать теорему Гёделя в общей форме.

Теорема G. Для любой правильной системы, удовлетворяющей условиям G1, G2 и G3, должно существовать утверждение, которое является истинным, но недоказуемым в данной системе.

Доказательство теоремы G представляет собой простое обобщение доказательства, которое уже известно читателю для системы Фергюссона. Обозначим через К множество таких чисел х, для которых элемент х*х не принадлежит множеству Р. Поскольку множество Р (согласно условию G1) именуемо в данной системе, то же можно сказать и о его дополнении Р (согласно условию G2), а следовательно, и о множестве Р* (согласно условию G3). Но множество Р* совпадает с множеством К (поскольку Р* — это множество таких чисел х, для которых х* х принадлежит Р, или, другими словами, множество таких чисел х, для которых элемент х*х не принадлежит Р). Таким образом, множество К допускает наименование в данной системе, откуда следует, что К = А* по крайней мере для одного числа k. (Для системы Фергюссона одним из таких чначений k было число 73, другим — число 75.) Таким образом, для любого числа х истинность утверждения x Є Ak равносильна утверждению, что число х*х не принадлежит Р, а это в свою очередь означает, что утверждение x Є Ax недоказуемо (в данной системе). В частности, если мы возьмем в качестве х число k то истинность утверждения k Є A* будет равносильна его недоказуемости в данной системе, что означает либо истинность, но недоказуемость этого утверждения, либо его ложность, но доказуемость в той же системе. Но последняя возможность исключена, поскольку мы предположили, что наша система является правильной; следовательно, указанное утверждение истинно, но недоказуемо в данной системе.

Обсуждение. В своей предыдущей книжке «Как же называется эта книга?» я рассматривал аналогичную ситуацию — остров, все жители которого делятся на рыцарей, которые всегда говорят только правду, и плутов, которые всегда лгут. При этом некоторых рыцарей мы называли признанными рыцарями, а некоторых плутов — отъявленными плутами. (Все рыцари высказывают истинные суждения, а признанные рыцари высказывают утверждения, которые не только истинны, но и доказуемы.) Далее, ни один из жителей острова не может сказать: «Я не рыцарь» — ведь рыцари никогда не лгут и, стало быть, рыцарь не станет говорить, будто он не рыцарь; плут же никогда не скажет о себе правдиво, что он не рыцарь. Именно поэтому ни один из обитателей острова никак не может заявить, что он не рыцарь. Вместе с тем некий островитянин вполне может сказать: «Я непризнанный рыцарь». Противоречия в таком заявлении нет, однако вот что интересно: сказавший это наверняка должен быть рыцарем, но непризнанным рыцарем. Дело в том, что плут никак не может сделать правдивого заявления, что он непризнанный рыцарь (поскольку он и в самом деле им не является); стало быть, говорящий должен быть рыцарем. Но раз он рыцарь, то, значит, должен говорить правду; стало быть, он рыцарь, но, как он сам утверждает, — непризнанный рыцарь. (Точно так же высказывание k Є Ak выдающее свою недоказуемость в данной системе, должно быть истинным, но недоказуемым в этой системе.)

 







Дата добавления: 2015-10-12; просмотров: 371. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия