Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание. На множестве Х: {х1, х2, x3, x4} = {1, 2, 3, 4} заданы отношения:





Цель работы:

1. Изучить основные понятия бинарных отношений;

2. Изучить задание отношений и их свойства.

На множестве Х: {х1, х2, x3, x4} = {1, 2, 3, 4} заданы отношения:

а) R = «<»; б) R = «>»; в) R = «≥»; г) R = «=»; д) R = «≠».

Для каждого отношения R определить его как подмножество декартова произведения Х × X, построить матрицу отношения С, определить свойства отношения.

Для каждого свойства выписать формулу, нарисовать граф, привести пример.

а) R = «<»

Х × X = {х1, х2, x3, x4} × {х1, х2, x3, x4} = {х1x1, х1x2, х1x3, х1x4, х2x1, х2x2, х2x3, х2x4, х3x1, х3x2, х3x3, х3x4, х4x1, х4x2, х4x3, х4x4} = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)}.

R = {х1x2, х1x3, х1x4, х2x3, х2x4, х3x4} = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}.

C        
         
         
         
         

Свойства отношения:

· Транзитивность
xRy и yRz => xRz
x = 1 y = 2 z = 3
1 < 2 2 < 3 => 1 < 3

б) R = «>»

Х × X = {х1, х2, x3, x4} × {х1, х2, x3, x4} = {х1x1, х1x2, х1x3, х1x4, х2x1, х2x2, х2x3, х2x4, х3x1, х3x2, х3x3, х3x4, х4x1, х4x2, х4x3, х4x4} = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)}.

R = {х2x1, х3x1, х3x2, х4x1, х4x2, х4x3} = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}.

C        
         
         
         
         

Свойства отношения:

· Транзитивность
xRy и yRz => xRz
x = 4 y = 3 z = 3
4 > 3 3 > 2 => 4 > 2

в) R = «≥»

Х × X = {х1, х2, x3, x4} × {х1, х2, x3, x4} = {х1x1, х1x2, х1x3, х1x4, х2x1, х2x2, х2x3, х2x4, х3x1, х3x2, х3x3, х3x4, х4x1, х4x2, х4x3, х4x4} = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)}.

R = {х1x1, х2x1, х2x2, х3x1, х3x2, х3x3, х4x1, х4x2, х4x3, х4x4} = {(1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1), (4,2), (4,3), (4,4)}.

C        
         
         
         
         

Свойства отношения:

· Рефлексивность
xRx
x = 1 => 1 ≥ 1

· Транзитивность
xRy и yRz => xRz
x = 4 y = 3 z = 3
4 > 3 3 > 2 => 4 > 2

г) R = «=»

Х × X = {х1, х2, x3, x4} × {х1, х2, x3, x4} = {х1x1, х1x2, х1x3, х1x4, х2x1, х2x2, х2x3, х2x4, х3x1, х3x2, х3x3, х3x4, х4x1, х4x2, х4x3, х4x4} = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)}.

R = {х1x1, х2x2, х3x3, х4x4} = {(1,1), (2,2), (3,3), (4,4)}.

C        
         
         
         
         

Свойства отношения:

· Рефлексивность
xRx
x = 1 => 1 = 1

· Транзитивность
xRy и yRz => xRz
x = 1 y = 1 z = 1
1 = 1 1 = 1 => 1 = 1

· Симметричность
xRy => yRx
1 = 1 => 1 = 1

д) R = «≠»

Х × X = {х1, х2, x3, x4} × {х1, х2, x3, x4} = {х1x1, х1x2, х1x3, х1x4, х2x1, х2x2, х2x3, х2x4, х3x1, х3x2, х3x3, х3x4, х4x1, х4x2, х4x3, х4x4} = {(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)}.

R = {х1x2, х1x3, х1x4, х2x1, х2x3, х2x4, х3x1, х3x2, х3x4, х4x1, х4x2, х4x3} = {(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)}.

C        
         
         
         
         

Свойства отношения:

· Симметричность
xRy => yRx
1 ≠ 2 => 2 ≠ 1

Контрольные вопросы:







Дата добавления: 2015-10-12; просмотров: 698. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия