Свойства первообразной.
Свойства первообразной. Перечислим свойства первообразной. 1. Если F– первообразная для функции f, то F + С, где С – константа, также является первообразной для той же функции. Действительно, (F + С)' = F' + С ' = f + 0 = f. 2. Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. 3. Действительно, пусть F и G – первообразные для функций f и g соответственно. Тогда F + G является первообразной для функции f + g: (F + G)' = F' + G' =f + g. 4.
Дадим строгое математическое определение понятия неопределенного интеграла. Выражение вида Определение. Неопределенным интегралом Напомним, что Задача нахождения неопределенного интеграла заключается в нахождении такой функции, производная которой равняется подынтегральному выражению. Данная функция определяется с точностью до постоянной, т.к. производная от постоянной равняется нулю. Например, известно, что Задача нахождение неопределенного интеграла от функций не столь простая и легкая, как кажется на первый взгляд. Во многих случаях должен быть навык работы с неопределенными интегралами, должен быть опыт, который приходит с практикой и с постоянным решением примеров на неопределенные интегралы. Стоит учитывать тот факт, что неопределенные интегралы от некоторых функций (их достаточно много) не берутся в элементарных функциях.
|