Студопедия — Получение наночастиц серебра
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Получение наночастиц серебра






Цель работы: получение наночастиц серебра путем восстановления цитрат-анионом и тетрагидридоборатом натрия.

Применяемое оборудование: магнитная мешалка, обладающая функцией электроплитки-Hei-Standart,химические стаканы на 200 мл (2шт), химический стакан на 100 мл (1 шт), колба на 50 мл.

Задание: получить наночастицы серебра, освоить работу на спектрофотометре, определить коэффициент экстинции наночастиц серебра, рассчитать размеры полученных наночастиц.

Подготовка к выполнению работы: ознакомиться с порядком работы на спектрофотометре и магнитной мешалке.

Краткое теоретическое введение

Особенности строения наночастиц серебра и их оптические свойства

Интерес к получению наночастиц серебра вызван свойствами, присущими только этому материалу: наибольшей интенсивностью полосы поверхностного плазмонного резонанса (ППР), самым высоким коэффициентом экстинции, явлением гигантского комбинационного рассеяния света, особенностями люминисценции и оптических характеристик приповерхностного слоя вблизи наночастиц серебра. Все больший интерес приобретает изучение бактерицидных свойств коллоидных растворов (наночастиц) серебра.

Кристаллическая решетка серебра, как и других металлов, устроена таким образом, что валентные электроны способны перемещаться по всему объему вещества, чем обусловлена высокая электропроводность металлов. Переменное электрическое поле светового луча смещает электроны проводимости и на поверхности наночастицы образуется диполь, который колеблется с частотой поля падающего света. Этот колеблющийся вблизи поверхности наночастицы диполь называют поверхностным плазмоном. Возникновение поверхностного плазмона возможно, если величина наночастицы много меньше длины падающего света.

Совпадение частоты колебаний поверхностного плазмона и частоты колебаний падающего света вызывает резонансное поглощение и рассеяние света, которое называется поверхностным плазмонным резонансом (ППР).

Поглощение света веществом рассчитывается по закону Ламберта-Бера

lg(J0/J) = εCd (1)

где J0 и J - интенсивности света до и после прохождения через слой толщины d (см) раствора вещества с концентрацией С (моль/л). Отношение J0/J называется погашением или экстинкцией, величина ε -молярным коэффициентом экстинкции.

Коэффициент экстинкции серебра наибольший в максимуме ППР по сравнению с частицами такого же размера из других материалов, то есть, наночастицы серебра пропускают свет в этой области спектра меньше любых других соразмерных частиц.

При взаимодействии света с нанопроволоками, наностержнями или контактирующими цепочками наносфер, когда длина частиц сравнима с длиной волны падающего света, диполь, образующийся на конце частицы, вызывает поляризацию прилегающих

участков и образование волны, бегущей от одного конца нанопроволоки или цепочки наносфер к другому. Точное попадание света, при помощи лазера, на один конец нанопроволоки вызывает образование на другом конце колеблющегося диполя, излучающего свет с длиной волны падающего света. Такое явление называется поверхностным плазмонным поляритоном. Это позволяет использовать нанопроволоки и цепочки наносфер в качестве волноводов оптических наноустройств.

Комбинационное рассеяние света, это рассеяние света исследуемым веществом, связанное со структурой его молекулы. Если снимать спектры комбинационного рассеяния (КР) веществ, адсорбированных на поверхности серебряных наночастиц, то усиление интенсивности полос в спектре в расчете на одну молекулу достигает 105-106 раз, по сравнению со спектрами, снятыми без участия наночастиц серебра. Это явление получило название – гигантское комбинационное рассеяние света. При условии точной фокусировки падающего света, можно получить усиление комбинационного рассеяния света в 1015 раз, что позволяет снять спектр одной или нескольких молекул. Если частота падающего электромагнитного излучения и частота колебаний поверхностного плазмона одинаковы и равны ω, то усиление интенсивности полосы комбинационного рассеяния пропорционально ω4.

Поверхностный плазмонный резонанс усиливает интенсивность спектров флуоресценции в 102-104 раз при совпадении длины волны ППР и длины волны возбуждения флуоресценции. При этом наблюдается уменьшение времени затухания флуоресценции, так как при взаимодействии электронных слоев наночастиц серебра и адсорбированных молекул облегчается переход между основным и возбужденным состоянием флуоресцирующей молекулы и скорость затухания флуоресценции увеличивается.

Молекулы веществ, находящиеся у поверхности наночастиц серебра подвергаются действию падающего излучения и поверхностного плазмонного резонанса, что увеличивает возможность фотохимических реакций для этих веществ, фотолюминисценции, поглощения и рассеяния света.

Наночастицы серебра размерами до 10 нм способны не только адсорбироваться на клеточной мембране, но и проникать внутрь бактерии. Бактерицидное действие серебра связывают с образованием ионов серебра (Аġ+) при окислении металла. Особое значение имеет форма наночастиц. Считают, что грань в декаэдрах и икосаэдрах, из которых состоит до 98% наночастиц в интервале 1-10 нм, обладает высокой химической активностью и присутствие этой грани усиливает антибактериальное действие наночастиц.

Эксперимент 1. Цитратный метод получения наночастиц серебра

Цитратный метод получения наночастиц золота, разработанный Туркевичем, применим и к получению наночастиц серебра. Но, так как серебро более активный металл, чем золото (Е0Аg+/Ag=0,8 В, Е0Au+3/Au = 1,5 В), то синтез наночастиц серебра происходит более сложно из-за способности серебра к быстрому окислению и агрегации. Для усиления устойчивости коллоидных растворов серебра наночастицы необходимо стабилизировать. В цитратном методе получения наночастиц серебра и восстановителем и стабилизатором служит цитрат-анион, получаемый при растворении в воде трехзамещенной натриевой соли лимонной кислоты. При нагревании раствора и окислении цитрат-аниона образуется ацетондикарбоновая и итаконовая кислоты.

Эти кислоты адсорбируются на поверхности частиц и контролируют их рост.

В настоящее время существуют два механизма, объясняющих образование и рост наночастиц серебра.

где Agx – кластеры серебра (< 1 нм), Agm – первичные частицы, стабилизированные цитратом (~ 1 нм), Agn – конечные частицы, R – восстановитель.

И по первому и по второму механизму сначала образуются кластеры серебра, которые затем взаимодействуют со стабилизатором – цитратом и конденсируются, образуя более крупные частицы. После достижения размера ~ 1нм конденсация кластеров больше не происходит и образование наночастиц по первому и второму пути начинает различаться. В первом случае концентрация стабилизатора оказывается достаточной и дальнейший рост частиц происходит за счет восстановления ионов серебра на поверхности наночастиц. При этом увеличение размеров частиц происходит медленнее, что приводит к образованию устойчивых коллоидных растворов наночастиц, в основном сферической формы.

Во втором случае концентрация стабилизатора (цитрата) оказывается недостаточной, чтобы предотвратить агрегацию кластеров. Это приводит к образованию наночастиц большого диаметра.

Большое влияние на размеры наночастиц оказывает соотношение концентраций ионов серебра и цитрат-аниона, а так же время кипячения раствора.

Ход работы

1. 25 мл 1х10-3 моль/л приготовленного на дистиллированной воде AgNO3 и нагреть в химическом стакане объемом в 200 мл на магнитной мешалке до кипения.

2. Приготовьте 100 мл 1х10-3 моль/л раствора Na3C6H5O7 в другом стакане и, при непрерывном размешивании, по каплям добавляйте в кипящий раствор AgNO3.

3. Наблюдайте изменение цвета раствора от бесцветного к желтому, что свидетельствует о восстановлении ионов серебра.

4. Нагревание продолжайте 15 минут, а затем охладите раствор до комнатной температуры.

 

Эксперимент 2. Получение наночастиц серебра путем восстановления тетрагидридоборатом натрия

Применение тетрагидридобората натрия (NaBH4) при получении наночастиц серебра имеет большее распространение, чем использование для этих же целей цитрат-аниона. Это объясняется более высокой восстановительной способностью боргидрида и простотой применения. Как и в цитратном методе, тетрагидридоборат натрия служит одновременно восстановителем и стабилизатором образующихся наночастиц.

Исследование механизма роста наночастиц показало, что в случае применения боргидрида, главную роль играет агрегация образовавшихся кластеров. До этого считалось, что согласно модели Ла Мера-Дайнегера, основное число коллоидных частиц создается в течение короткого времени нуклеации, а дальнейший рост происходит за счет восстановления ионов серебра на поверхности частиц (как в цитратном методе). Проведенные исследования показали, что концентрация ионов серебра в растворе не меняется во все время роста наночастиц. Это доказывает, что рост частиц не может происходить за счет восстановления серебра на поверхности кластеров. Увеличение размера частиц происходит за счет агрегации кластеров при разложении боргидрида, когда стабилизирующее действие тетрагидридобората натрия уменьшается.

 

Ход работы

1. 5 мл 1х10-3 моль/л приготовленного на дистиллированной воде AgNO3 и перелить в колбу на 50 мл.

2. Отмерить в стаканчик 15 мл 2х10-3моль/л NaBH4 и охладить до температуры 0С0, поставив в кристаллизатор со льдом.

3. Перелить охлажденный NaBH4 в колбу с AgNO3 и быстро смешать, энергично встряхивая, что помогает образованию монодисперсных частиц.

Образующийся раствор желтого цвета показывает единственный пик поглощения с длиной волны около 400нм. Как показала электронная трансмиссионная микроскопия, образующиеся наночастицы имеют сферическую форму, диаметром 1-50 нм, а для некоторых препаратов 1-10 нм. На сферическую форму наночастиц указывает желтая окраска раствора. Образующиеся частицы стабильны, не осаждаются и не меняют окраску в течение нескольких недель.

Обработка результатов

С помощью спектрофотометра определить коэффициент экстинкции и используя формулу

Cext =24 πRε3/2м/λε (1)

(где R - радиус наночастицы, εм-диэлектрическая проницаемость среды, ε - диэлектрическая проницаемость частиц, λ-длина волны падающего света, Cext - коэффициент экстинкции) оцените размер наночастицы.

 

Контрольные вопросы

1.Чем объясняется возникновение на поверхности наночастиц избыточной поверхностной энергии?

2.Какое явление называется поверхностным плазмонным резонансом?

3.Что называется молярным коэффициентом экстинции и как рассчитать его величину, используя закон Ламберта-Бера?

4.Какое явление называют гигантским комбинационным рассеянием света и где оно применяется?

5.Как возникает поверхностный плазмонный поляритон и где возможно его применение?

6.Какие физические и химические явления могут происходить с молекулами веществ, адсорбированных на поверхности наночастиц серебра под действием поверхностного плазмонного резонанса?

7.Чем объясняется повышенная бактерицидная активность наночастиц серебра?

8.По какому механизму происходит восстановление наночастиц серебра с помощью цитрат-аниона?

9.Какой процесс приводит к росту наночастиц серебра при восстановлении ионов серебра тетрагидридоборатом натрия?

10.Какие способы получения наночастиц серебра Вы еще знаете?

 

Список используемых источников

 

1. Крутяков Ю.А., Кудринский А.А., Оленин А.Ю., Лисичкин Г.В. Успехи химии, 2008, т.77, №3.

 

 

Лабораторная работа №4

Создание диэлектрических нанослоев на проводящей подложке и исследование их диэлектрических свойств

Цель работы:

Применяемое оборудование: Мешалка магнитная. Центрифуга. Установка для измерения электрических свойств. Бутилацетат. Пенополиуретан.

Задание: Изготовить конденсатор основанный нанослоев на проводящей подложке. Исследовать диэлектрические свойства.

Подготовка к выполнению работы:

Краткое теоретическое введение

Роль тонкопленочной технологии в производстве интегральных схем

Интегральная электроника развивается не как новая или обособленная область техники, а путем обобщения многих технологических приемов, ранее используемых в производстве дискретных полупроводниковых приборов и при изготовлении топкопленочпых покрытий.

В соответствии с этим в интегральной электронике определились два главных направления: полупроводниковое и тонкопленочное. Создание интегральной схемы на одной монокристаллической полупроводниковой (пока только кремниевой) пластине является естественным развитием отработанных в течение последних десятилетий технологических принципов создания полупроводниковых приборов, как известно, хорошо зарекомендовавших себя в эксплуатации.

Тонкопленочное направление интегральной электроники основано на последовательном наращивании пленок различных материалов на общем основании (подложке) с одновременным формированием из этих пленок микро деталей (резисторов, конденсаторов, контактных площадок и др.) и внутрисхемных соединений.

Сравнительно недавно полупроводниковые (твердые) и тонкопленочные гибридные ИС рассматривались как конкурирующие направления в развитии интегральной электроники. В последние годы стало очевидно, что эти два направления отнюдь не исключают, а скорее, наоборот, взаимно дополняют и обогащают друг друга. Более того, до сегодняшнего дня не созданы (да, видимо, в этом и нет необходимости) интегральные схемы, использующие какой-либо один вид технологии. Даже монолитные кремниевые схемы, изготавливаемые в основном по полупроводниковой технологии, одновременно применяют такие методы, как вакуумное осаждение пленок алюминия и других металлов для получения внутрисхемных соединений, т. е. методы, на которых основана тонкопленочная технология.

Большим достоинством тонкопленочной технологии является ее гибкость, выражающаяся в возможности выбора материалов с оптимальными параметрами и характеристиками и в получении по сути дела любой требуемой конфигурации и параметров пассивных элементов. При этом допуски, с которыми выдерживаются отдельные параметры элементов, могут быть доведены до 1—2%. Это достоинство особенно эффективно проявляется в тех случаях, когда точное значение номиналов и стабильность параметров пассивных компонентов имеют решающее значение (например, при изготовлении линейных схем, резистивных и резистивно-емкостных схем, некоторых видов фильтров, фазочувствительных и избирательных схем, генераторов и т. п.).

В связи с непрерывным развитием и совершенствованием как

полупроводниковой, так и тонкопленочной технологии, а также ввиду все большего усложнения ИС, что выражается в увеличении числа компонентов

и усложнении выполняемых ими функций, следует ожидать, что в ближайшем будущем будет происходить процесс интеграции технологических методов и приемов и большинство сложных ИС будут изготовляться на основе совмещенной технологии. При этом можно получить такие параметры и такую надежность ИС, которых нельзя достигнуть при использовании каждого вида технологии в отдельности. Например, при изготовлении полупроводниковой ИС все элементы (пассивные и активные) выполняются в одном технологическом процессе, поэтому параметры элементов оказываются взаимосвязанными. Определяющими являются активные элементы, так как обычно в качестве конденсатора используется переход база — коллектор транзистора, а в качестве резистора—диффузионная область, получающаяся при создании базы транзистора. Нельзя оптимизировать параметры одного элемента, не изменив одновременно характеристики других. При заданных характеристиках активных элементов изменять номиналы пассивных элементов можно лишь изменением их размеров.

При использовании совмещенной технологии активные элементы изготовляются чаще всего методами планарной технологии в пластине кремния, а пассивные годами тонкопленочной технологии на окисленной поэлементны (резисторы, а иногда и конденсаторы) — поверхности той же самой кремниевой пластины. Однако процессы изготовления активной и пассивной частей ИС разнесены по времени. Поэтому характеристики пассивных элементов в значительной мере независимы и определяются выбором материала, толщиной пленок и их геометрией. Поскольку транзисторы совмещенной ИС находятся внутри подложки, размеры такой схемы могут быть значительно уменьшены по сравнению с гибридными ИС, которые используют дискретные активные элементы, занимающие сравнительно много места на подложке.

Схемы, изготовленные по совмещенной технологии, имеют целый ряд несомненных достоинств. Так, например, при этом имеется возможность получения на малой площади резисторов с большой величиной и малым температурным коэффициентом сопротивления, имеющих очень узкую ширину и большое поверхностное сопротивление. Контроль скорости осаждения в процессе получения резисторов позволяет изготовить их с очень высокой точностью. Резисторам, полученным путем осаждения пленок, не свойственны токи утечки через подложку даже при высоких температурах, а сравнительно большая теплопроводность подложки препятствует возможности появления в схемах участков с повышенной температурой.

Тонкие пленки, помимо производства ИС по эпитаксиально-планарной технологии, широко используются в производстве гибридных ИС, а также при изготовлении новых видов микроэлектронных приборов (приборов с зарядовой связью, криотронных ЗУ на основе эффекта Джозефсона, ЗУ на цилиндрических магнитных доменах и др.).

 

Тонкопленочная металлизация полупроводниковых приборов и

интегральных схем

При изготовлении полупроводниковых приборов и ИС для получения омических контактов к кремнию, меж соединений и контактных площадок, а также электродов затвора МОП структур широкое распространение получили пленки алюминия, что обусловлено следующими достоинствами этого металла:

- низкой стоимостью Аl и возможностью использования для всех процессов металлизации одного металла, что значительно упрощает и удешевляет технологию и предотвращает возникновение гальванических эффектов;

- высокой электропроводностью пленок Аl, близкой к электропроводности объемного материала; легкостью испарения Аl в вакууме из вольфрамовых тиглей и электронно-лучевых испарителей;

- высокой адгезией А1 к кремнию и его окислам; низкоомностью контакта Аl с кремнием р- и n-типов проводимости;

- заметной растворимостью кремния в Аl с образованием твердого раствора, почти не уменьшающего электропроводности;

- отсутствием в системе Аl—Si химических соединений;

- химическим взаимодействием А1 с Si02, частично остающимся на

контактных площадках; химической стойкостью А1 в окислительной среде и

радиационной стойкостью;

- легкостью проведения фотолитографических операций для получения конфигурации проводящих дорожек с использованием травителей, не реагирующих с кремнием и двуокисью кремния; хорошей пластичностью Аl и устойчивостью к циклическим изменениям температуры.

Величина зерен осаждаемых пленок Аl существенно зависит от

скорости испарения и температуры подложек. Чем больше величина зерна чем более совершенна кристаллическая структура пленки, тем меньше ее удельное сопротивление, меньше сказывается эффект электромиграции и как следствие токоведущие дорожки, и омические контакты имеют больший срок службы. Ориентированный рост пленок Аl на не окисленных поверхностях кремния в плоскости (111) наблюдается при скоростях осаждения около 3 • 10-2 мкм • с-1 и температуре подложки 200—250°С.

Для получения столь больших скоростей осаждения пленок чаще всего используются электронно-лучевые испарители. При этом степень совершенства кристаллической структуры пленок может неконтролируемо изменяться вследствие дополнительного радиационного нагрева подложек, величина которого зависит как от мощности испарителя, так и от материала подложки и толщины осаждаемой пленки.

Неконтролируемые изменения в структуре пленки возникают также из-за

наличия заряженных частиц в молекулярном пучке испаряемых паров Аl.

Концентрация заряженных частиц тем выше, чем больше ток эмиссии катода

и больше скорость испарения.

 

Ход работы

1. Включить питание лаборатории.

2. Приготовить раствор полиуретана.

2.1. В плотно закрывающуюся ёмкость налить 200 мл «Бутилацетата».

2.2. Покрошить «Пенополиуретан» до диаметра не превышающего диаметр горлышка ёмкости применяемой в пункте «3»

2.3. Измельчённый «Пенополиуретан» в пункте 5 постепенно вносить в «Бутилацетат» до получения раствора по консистенции как жидкая сметана

3. Включаем центрифугу

4. Открываем центрифугу, наносим вазелин на бронзовый грибок и распределяем тонко по поверхности.

5. Взяли алюминиевый электрод, нанесли его на вазелин и совместили центр электрода с центром грибка

6. На электрод наносим раствор (раствор полиуретана в бутилацетате). Распределяем его по всей поверхности и собираем излишки раствора.

7. Запускаем центрифугу на скорости 5000 об/мин.

8. После открытия центрифуга аккуратно, не повредив слой нанесенной пленки, снимаем электрод с нанесенной пленкой.

9. Повторить с 6 по 9 пункт

10. Совмещаем два электрода диэлектрическими пленками друг к другу, поместив между ними небольшое количество бутилацетата либо нашего раствора

11. Полученный конденсатор надо положить под пресс для наилучшего сращивания пленок

12. Убираем погрешность измерительных контактов на измерительной установке????:

12.1. Запускаем установку

12.2. Подключаем измерительные контакты к щупальцам установки

12.3. Заходим в меню и выбираем первый пункт OFFSET

12.4. При разомкнутых контактах убираем погрешность измерений емкости

12.5. При замкнутых контактах убираем погрешность сопротивления и индуктивности

12.6. Выход из меню

13. Помещаем полученный конденсатор между измерительными электродами

14. Результаты замера емкости заносим в отчет

 

 







Дата добавления: 2015-10-15; просмотров: 1515. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия