Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теория работы и описание прибора. 1. Что называется удельной теплоемкостью вещества?


Контрольные вопросы

1. Что называется удельной теплоемкостью вещества? Единицы её измерения в системе СИ.

2. Сформулировать и выразить математически закон Джоуля - Ленца.

3. Если сопротивления спиралей в калориметрах одинаковы, то можно считать, что в калориметрах выделяется одинаковое количество теплоты. Почему?

4. В процессе измерения необходимо непрерывно помешивать жидкость. Почему?

5. Вывести формулу (4) для опытного определения удельной теплоемкости исследуемой жидкости.

Приборы и принадлежности

Закрытый стеклянный баллон с краном, манометр, насос

рис. 1

 

Теория работы и описание прибора

Для вещества в любом агрегатном состоянии характерны понятия удельной (с) и молярной (С) теплоемкости. Удельной теплоемкостью вещества называется физическая величина, численно равная количеству теплоты, необходимой для нагревания единицы массы вещества на 1 Кельвин.

(1)

Молярной теплоемкостью вещества называется физическая величина, численно равная количеству теплоты, необходимой для нагревания одного моля вещества на 1 Кельвин.

(2)

Здесь Q – количество теплоты, которое было затрачено на нагре­вание вещества от температуры Т1 до Т2. DT = Т2 — Т1. Для ве­щества в газообразном состоянии величины удельной или моляр­ной теплоёмкости газа существенно зависят от того, при каких ус­ловиях он нагревается: при постоянном объёме или при постоян­ном давлении.

В первом случае сообщенное газу тепло идёт только на уве­личение внутренней энергии газа, так как объём газа не изменяет­ся и поэтому не совершается работа расширения. Во втором слу­чае требуётся дополнительное количество теплоты, необходимое для совершения работы расширения газа, так как неизменность давления обеспечивается увеличением объёма газа. Поэтому у газа различают две удельные и две молярные теплоёмкости: теплоём­кость при постоянном объёме и теплоемкость при постоянном давлении. Удельной (молярной) теплоемкостью газа при постоян­ном объёме сv (Cv), или при постоянном давлении сp (Cp) на­зывается физическая величина, численно равная количеству теп­лоты, необходимой для нагревания единицы массы (моля) на 1 кельвин при постоянном объёме или при постоянном давлении со­ответственно. Между молярной и удельной теплоемкостями оче­видно соотношение:

;

где М — молярная масса газа.

Очевидно, что молярная теплоемкость газа при постоянном давлении больше молярной теплоёмкости при постоянном объёме,

так как , а ,

где R — молярная (универсальная) газовая постоянная, численно равная работе расширения одного моля газа при нагревании его на один кельвин. Тогда .

Обозначим отношение теплоёмкостей буквой g, тогда

(3)

Величина g зависит только от числа степеней свободы молекул, из которых состоит газ. Так как , а

где i — число степеней свободы, то

(4)

Численное значение g различно для одно-, двух или многоатом­ных газов и зависит от числа степеней свободы (для одно атомных i = З, двухатомных i = 5 и многоатомных i = 6). На двухатом­ные газы (N2 и О2) приходится приблизительно 99% общего соста­ва воздуха, поэтому величину i можно считать приближённо рав­ной 5. Величина отношения теплоёмкостей g имеет большое зна­чение в изучении адиабатных процессов и процессов близких к ним. Например, от этой величины зависит скорость распростране­ния звука в газах, течение газов по трубам со сверхзвуковыми скоростями и другие процессы.

В настоящей работе определяется отношение теплоемкостей g для воздуха (принимая его за двухатомный газ) методом адиа­батного расширения, который основан на применении уравнений адиабатного и изотермического процессов.

Адиабатным процессом называется изменение состояния га­за, при котором не происходит теплообмена с окружающей сре­дой. В этом случае и формула первого закона термодина­мики примет вид , т.е. при адиабат­ном процессе расширения газом совершается работа только расчет изменения запаса внутренней энергии. Этот процесс описы­вается уравнением Пуассона

(5)

где р — давление и V — объём газа.

Изотермическим называется процесс, который протекает при постоянной температуре, те. Т = const.

В этом случае dT =0, следовательно, dU =0 и тогда из первого закона термодинамики получим . Таким образом, при изотермическом процессе всё подводимое тепло расхо­дуется на работу расширения газа.

Экспериментальная установка состоит из стеклянного баллона А (рис. 11), соёдинённого с манометром В и насосом Н. Через кран К1 воздух нагнетается в баллон, а через кран К1 — выпускается. Если кран К2 открыт, баллон сообщается с атмосферным воз­духом и давление р внутри него равно атмосферному, разность уровней манометра равна нулю, а температура Т в баллоне равна температуре окружающей среды. В процессе работы газ, заключенный в баллоне, проходит последовательно три состояния Если закрыть кран К2 и накачать в баллон небольшое количество воз­духа, то давление в баллоне будет выше атмосферного, что отме­чается возникновением разности уровней жидкости в манометре. При сжатии воздух в баллоне начнёт нагреваться, затем постепен­но примет температуру окружающей среды, и тогда разность уровней в манометре будет устойчивой, равной р1. Давление воздуха в баллоне примет величину р+р1,

где р — атмосферное давление,

р1 — добавочное давление.

Таким образом, состояние воздуха внутри баллона, которое назовём I состоянием, характеризуется параметрами р + р1; V1 и T1. Если затем открыть кран К2, то часть воздуха выйдет из бал­лона и давление сравняется с атмосферным, температура газа по­низится до Т2, а объём будет равен V2. Этот процесс расширения происходит очень быстро и может считаться адиабатным, так как за короткое время процесса не происходит теплообмена между воздухом в баллоне и окружающей средой. Состояние газа, соответствующее концу адиабатного процесса назовём П состоянием газа с параметрами р; V2 и Т2. Адиабатный процесс описывается

уравнением Пуассона .

Из уравнения Пуассона следует, что переход газа из I состояния во П может быть выражен в виде:

откуда

(6)

Охладившийся при расширении воздух в баллоне через неко­торое время вследствие теплообмена нагреется до температуры внешней среды T1, давление возрастёт до некоторой величины р + р2, где р2 — новая разность уровней в манометре. Об]ём воз­духа не изменится и будет равен V2. Это состояние назовём III. Переход газа из II состояния в III происходит в условиях постоян­ного объёма — изохорно. III состояние характеризуется парамет­рами р + р2; V2 и T1. Так как в I и III состояниях воздух имеет одну и ту же температуру (процесс изотермический), то, применяя закон Бойля-Мариотта, будем иметь:

 

откуда получим

(7)

Возведя обе части уравнения в степень g, получим

(8)

Пользуясь выражением (6) и приравняв правые части (8) и (6), получим

(9)

Прологарифмируем выражение (9) и, решая относительно g, получим:

(10)

Так как практически давление р, р+р1 и р+р2 отличаются друг от друга незначительно, то в формуле (10) разности логарифмов можно принять пропорциональными разностям самих давлений и приближенно положить

(11)




<== предыдущая лекция | следующая лекция ==>
Теория работы и описание прибора. 2. Коэффицент поверхностного натяжения воды s1 определяют из графика зависимости его от температуры (рис | Теория работы и описание приборов.

Дата добавления: 2015-10-15; просмотров: 1661. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия