ХАРАКТЕРИСТИКИ ПРОЧНОСТИ
Большинство технических характеристикпрочности определяют в результате статического испытания на растяжение, сжатие, изгиб и кручение. Растяжение - наиболее жесткая схема напряженного состояния. Испытания на растяжение позволяют по результатам одного опыта определить сразу несколько важных механических характеристик материала. Методы испытания на растяжение стандартизованы. В отдельных стандартах сформулированы, определения характеристик, оцениваемых при испытании, даны типовые формы и размеры образцов, основные требования к оборудованию, методика испытании и расчета результатов. При испытании на одноосное растяжение образец, закрепленный в захватах разрывной машины, деформируется при статической, плавно возрастающей нагрузке. Автоматически идет запись диаграммы растяжения, т.е. зависимости деформации от действующей нагрузки . Для поликристаллов различных металлов и сплавов диаграммы растяжения могут иметь различный вид в зависимости от протекания деформации и характера разрушения образца. На рис.1 представлена диаграмма растяжения для образцов, разрушающихся после образования шейки в результате сосредоточенной деформации. Рис.I. Диаграмма растяжения.
По координатам характерных точек диаграммы можно рассчитать различные прочностные характеристики, где - приложенная нагрузка; - начальная площадь поперечного сечения образца. На начальном участке диаграммы, до точки "б", материал испытывает только упругую деформацию, которая полностью исчезает после снятия нагрузки. В области упругой деформации до точки "а" деформация пропорциональна нагрузке или действующему напряжению . Нагрузке в точке "а", определяющей конец прямолинейного участка диаграммы растяжения,соответствует предел пропорциональности . До точки "а" справедлив закон Гука: , где - относительная деформация; - абсолютное удлинение; - начальная длина образца. Коэффициент пропорциональности характеризует упругиесвойства материала - это модуль нормальной упругости . При заданном напряжении сувеличением уменьшается , т.е. возрастает жесткостьконструкции. Значение зависит от сил межатомноговзаимодействия и меняется незначительно при изменении состава сплава, структуры,термической обработки. Например, для различных углеродистых и. легированных сталей независимо от вида предшествующей обработки. Координата точки "δ" на диаграмме определяет теоретический предел упругости материала , т.е. максимальное напряжение, до которого образец получает только упругую деформацию. Практически, из-за трудности определения , используют условный предел упругости, под которым понимают напряжение, вызывающееостаточную деформацию от начальной длины образца. В обозначении условного предела упругости указывают значение остаточной деформации (например, ). На участке диаграммы правее точки "δ" материал испытывает пластическую деформацию. Горизонтальный участок "c" - "d", соответствующий пластической деформации при постоянной нагрузке, называется площадкой текучести, а напряжение, отвечающее этому участку, физическим пределом текучести . Из-за сложности определения часто используют условный предел текучести, т.е. напряжение, вызывающее остаточную деформацию,равную от начальной длины образца: . Таким образом, предел текучести - физический и условный - характеризует сопротивление материала небольшим пластическим деформациям. При дальнейшем нагружении, правее точки "d", пластическая деформация увеличивается, равномерно распределяясь по всему объему образца. В точке "b", макроравномерность пластической деформации нарушается. В какой-то части образца, обычно вблизи концентратора напряжений, который уже был в исходном состоянии или образовался при растяжении (чаще всего в середине расчетной длины), начинается локализация деформации. Ей соответствует местное сужение поперечного сечения образца - образование шейки. Напряжение в этот момент испытания называют временным сопротивлением разрыву, оно соответствует максимальной нагрузке, которую выдерживает образец до разрушения: . По физическому смыслу - это условное напряжение, характеризующее сопротивление максимальнойравномерной деформации. За точкой b идет развитие шейки вплоть до разрушения, в точке k. Максимальное напряжение, которое выдерживает материал в момент, предшествующий разрушению образца, , где -площадь поперечного сечения образца в месте разрушения) называется истинным сопротивлением разрушению. Таким образом, важнейшие показатели прочностных свойств, определяемые при статическом испытании на растяжение: а) сопротивление упругой деформации, характеризующееся и б) сопротивление пластической деформации, характеризующееся .
Определение прочностных характеристик материалов, хрупко разрушающихся при растяжении, проводят при испытании на изгиб илисжатие, т.е. при более мягкой схеме нагружения.
|