Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Знакочередующиеся ряды. Теорема Лейбница


 

Практическое занятие 9-2часа

Знакочередующиеся ряды. Знакопеременные ряды

Знакочередующиеся ряды. Теорема Лейбница

Рассмотрим ряды, члены которых имеют чередующиеся знаки, т.е.

(1), где . Такой ряд называется знакочередующимся.

Теорема (Лейбница). Если в знакочередующемся ряде (1) члены (2) - условие монотонного убывания и . То ряд (1) сходится, его сумма положительна и не превосходит первого члена.

Определение. Ряд называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные (количество положительных и количество отрицательных членов бесконечно, т.к. если конечное плюс бесконечное, то можно отбросить конечное число членов).

Знакочередующиеся ряды являются частным случаем знакопеременных рядов.

 

Рассмотрим знакопеременный ряд

(1)

и ряд, составленный из абсолютных величин

 

(2)

 

Определение. Ряд (1) называется абсолютно сходящимся, если сходится ряд из абсолютных величин (2).

 

Теорема 1 (достаточный признак сходимости знакопеременного ряда). Если ряд (1) сходится абсолютно, то он сходится.

Замечание. Теорема 1 является достаточным признаком сходимости знакопеременного ряда, но не необходимым:

Существуют такие знакопеременные ряды, которые сами сходятся, но ряды, составленные из абсолютных величин их членов, расходятся.

Введем понятие условной сходимости знакопеременного ряда.

Определение. Ряд (1) называется условно сходящимся, если ряд из абсолютных величин расходится, а ряд сходится.

 

Пример 9.

Исследовать сходимость ряда.

.

Применим признак Лейбница. Так как

 

то

Следовательно, выполнено первое условие признака Лейбница. Далее, так как

то выполнено и второе условие. Значит, данный ряд сходится.

 

Пример 10.

Исследовать сходимость ряда

Первое условие признака Лейбница выполняется:

С другой стороны,

Так как , то не выполнен необходимый признак сходимости ряда. Ряд расходится.

Пример 11.

Исследовать сходимость ряда

Так как числа 1,7,13,19,25,31,… образуют арифметическую прогрессию с разностью , то . Исследуем на абсолютную сходимость:

По признаку Даламбера имеем

Следовательно, ряд сходится абсолютно.

 

Пример 12. Исследовать сходимость ряда

Исследуем на абсолютную сходимость:

Так как и ряд расходится, то абсолютной сходимости нет.

Исследуем на условную сходимость:

так как

1)

2)

То по признаку Лейбница ряд сходится условно.




<== предыдущая лекция | следующая лекция ==>
Теорема 3. (Интегральный признак сходимости ряда) | 

Дата добавления: 2015-10-15; просмотров: 436. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия