Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕР 17





Эксперты определили, что члены потока поступлений (рента постнумерандо) можно описать нормальными распределениями с параметрами 10 (средняя величина) и 3 (стандартное отклонение). Иными словами, полный диапазон значений каждого члена потока платежей укладывается в интервал, примерно равный 10 ± 3 х 3. Срок поступлений — 5 лет. Дисконтирование производится по годовой ставке 15%. Допустим, что указанные распределения независимые, тогда

Границы диапазона современной стоимости такого потока платежей определяются выражением 32,52 ± z x 2,334.

Если вероятность, с которой желательно установить границы интервала, принята на уровне 90%, то z = 1,65 и искомые границы составят 28,72; 36,37. Уменьшение надежности вывода, естественно, сокращает этот интервал. Так, для вероятности 75% (z = 1,15) получим соответственно 29,84; 35,20.

Современная стоимость с учетом вероятностей выплат членов потока. В общей постановке задача выглядит следующим образом. Пусть выплата каждого члена потока платежей Rt не безусловна, а имеет некоторую вероятность рt. Современная стоимость такого потока составит

(1.39)

Для практических целей данное выражение, очевидно, следует конкретизировать с учетом особенностей потока платежей в инвестиционном процессе или страховании. Например, пусть объектом является поток, состоящий из выплат премий (взносов страхователя) при долгосрочном страховании имущества. Обобщенную сумму премий в виде современной ее стоимости найдем, рассуждая следующим образом. Если страховое событие (например, гибель имущества) произойдет на первом году страхования, то страховщик получит премию только один раз; если это событие случится на втором году страхования, то премия будет выплачена два раза, и т. д. Допустим, что вероятности наступления страховых событий в течение года одинаковы и равны q. Если годовая премия пренумерандо равна Р, то математическое ожидание премии при дисконтировании ежегодных выплат за весь срок страхования составит:

где v — дисконтный множитель.

Полученный показатель Е(А) представляет собой современную стоимость страховых премий с учетом вероятности их выплат. Аналогичным путем можно разрабатывать формулы для оценки величины современной стоимости потоков платежей и для инвестиционных процессов, если учет вероятностей является необходимым.








Дата добавления: 2015-10-15; просмотров: 297. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия