Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕР 12





Намечается ежегодно в течение трех лет увеличивать выпуск продукции на 1 млрд. руб. Базовый уровень выпуска — 10 млрд. руб. Необходимо определить суммарный стоимостной объем выпуска с начислением процентов — сила роста 8%.

Сначала определим современную стоимость данного непрерывного потока поступлений (см. (1.28)):

Коэффициент приведения составит:

Таким образом, А = 30,512 млн. руб.

Затем на основе (1.27) находим наращенную сумму:

Чтобы методика определения современной стоимости непрерывной ренты была более наглядной, решим поставленную задачу иным способом, предварительно трансформировав непрерывную ренту в дискретную с платежами в середине периодов. Получим такую последовательность: 10,5; 11,5; 12,5. Затем определим процентную ставку, эквивалентную силе роста 0,08. Находим

i = е0,08-1=0,083287.

Искомая величина составит:

А = 10,5 х 1,08329-0,5 + 11,5 х l,08329-1,5 + 12,5 х 1,08329-2,5 = = 30,522.

Как видим, погрешность незначительна.

Экспоненциальный рост платежей. Поток платежей описывается экспоненциальной функцией

Rt = R х еgt.

Назовем параметр g непрерывным темпом прироста платежей. Между принятым в статистике дискретным темпом прироста k и непрерывным существует следующая зависимость:

g = ln(l + k).

Современная величина такой ренты находится следующим образом:

(1.29)

В знаменателе формулы (1.29) фигурирует разность параметров, характеризующих непрерывные процессы. Эту разность легко найти с помощью дискретных параметров роста платежей и начисления процентов, которые обычно и задаются в условиях формирования потока платежей, а именно







Дата добавления: 2015-10-15; просмотров: 376. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия