ПРИМЕР 6. Откуда следует, что размер ежегодного погасительного платежа составит R = 100/а5;20
Долг в сумме 100 млн. руб. погашается постоянной годовой рентой в течение 5 лет. На остаток долга начисляются проценты по ставке 20% годовых. Приравняв сумму долга современной стоимости погасительных платежей, можно записать 100 = Ra 5;20. Откуда следует, что размер ежегодного погасительного платежа составит R = 100/ а 5;20. Коэффициент приведения данной ренты находится как
откуда искомая сумма Определить значение процентной ставки по остальным параметрам ренты не так просто, как это может показаться на первый взгляд. Для этого прибегают к каким-либо приближенным методам (линейная интерполяция), различным итерационным процедурам (метод Ньютона - Рафсона, метод секущей и т. д.). На компьютере легко реализуется метод поразрядного приближения. Формулы для расчета обобщающих параметров переменных рент. Приведем формулы для расчета обобщающих характеристик наиболее распространенного вида переменных рент — рент с постоянным изменением их членов. Годовая рента с постоянным темпом изменения. Рассмотрим ситуацию, когда платежи изменяют свои размеры во времени с постоянным относительным приростом. Например, ожидается, что в пределах некоторого интервала времени отдача от инвестиций будет увеличиваться с постоянным темпом. Поток таких платежей здесь следует в геометрической прогрессии и состоит из членов R,Rq,Rq 2 ,...,Rqn- 1(где q — знаменатель прогрессии, характеризует темп роста). Если этот ряд представляет собой ренту постнумерандо, то сумма дисконтированных членов такого потока (1.16) Пусть теперь q = 1 + k, где k — темп прироста платежей. Темп прироста может быть как положительным (k > 0), так и отрицательным (k < 0). В итоге (1.17) Для сокращения дальнейшей записи обозначим дробь, на которую в данной формуле умножается R, через а. При k = 0 величина а равна коэффициенту приведения постоянной ренты, при k = i имеем а = п. Графическая иллюстрация зависимости а от темпа прироста при условии, что остальные параметры ренты постоянны, приведена на рис. 1.3. Наращенная сумма такой ренты (1.18)
|