Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИМЕР 6. Откуда следует, что размер ежегодного погасительного платежа составит R = 100/а5;20




Доверь свою работу кандидату наук!
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Долг в сумме 100 млн. руб. погашается постоянной годовой рентой в течение 5 лет. На остаток долга начисляются проценты по ставке 20% годовых. Приравняв сумму долга современной стоимости погасительных платежей, можно записать 100 = Ra5;20.

Откуда следует, что размер ежегодного погасительного платежа составит R = 100/а5;20. Коэффициент приведения данной ренты находится как

 

откуда искомая сумма

Определить значение процентной ставки по остальным параметрам ренты не так просто, как это может показаться на первый взгляд. Для этого прибегают к каким-либо приближенным методам (линейная интерполяция), различным итерационным процедурам (метод Ньютона - Рафсона, метод секущей и т. д.). На компьютере легко реализуется метод поразрядного приближения.

Формулы для расчета обобщающих параметров переменных рент.Приведем формулы для расчета обобщающих характеристик наиболее распространенного вида переменных рент — рент с постоянным изменением их членов.

Годовая рента с постоянным темпом изменения. Рассмотрим ситуацию, когда платежи изменяют свои размеры во времени с постоянным относительным приростом. Например, ожидается, что в пределах некоторого интервала времени отдача от инвестиций будет увеличиваться с постоянным темпом. Поток таких платежей здесь следует в геометрической прогрессии и состоит из членов R,Rq,Rq2,...,Rqn-1(где q — знаменатель прогрессии, характеризует темп роста). Если этот ряд представляет собой ренту постнумерандо, то сумма дисконтированных членов такого потока

(1.16)

Пусть теперь q = 1 + k, где k — темп прироста платежей. Темп прироста может быть как положительным (k > 0), так и отрицательным (k < 0). В итоге

(1.17)

Для сокращения дальнейшей записи обозначим дробь, на которую в данной формуле умножается R, через а. При k = 0 величина а равна коэффициенту приведения постоянной ренты, при k = i имеем а = п. Графическая иллюстрация зависимости а от темпа прироста при условии, что остальные параметры ренты постоянны, приведена на рис. 1.3.

Наращенная сумма такой ренты

(1.18)







Дата добавления: 2015-10-15; просмотров: 340. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.019 сек.) русская версия | украинская версия